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Editorial
by Martyn Plummer

Welcome to volume 4, issue 2 of The R Journal.

Changes to the journal

Thomson Reuters has informed us that The R Jour-
nal has been accepted for listing in the Science Ci-
tation Index-Expanded (SCIE), including the Web of
Science, and the ISI Alerting Service, starting with
volume 1, issue 1 (May 2009). This complements
the current listings by EBSCO and the Directory of
Open Access Journals (DOAJ), and completes a pro-
cess started by Peter Dalgaard in 2010.

Since The R Journal publishes two issues per year,
the delay between acceptance and publication can
sometimes be long. In July, we started putting ac-
cepted articles online, so that they are immediately
accessible. If you want to see a preview of some of
the articles in the next issue, go to the “Accepted Ar-
ticles” page on the R Journal Web site.

A minor formatting change in this issue is the in-
clusion of back-links in the bibliography. Citations
in The R Journal are hyper-links that will take you
to the corresponding entry in the bibliography. The
back-links now enable you to go back to the referring
page.

In this issue

The Contributed Research Articles section of this
issue opens with a trio of papers by Paul Mur-

rell, explaining advanced graphics features of R. We
then have two papers on multilevel models: Il Do
Ha, Maengseok Noh, and Youngjo Lee present the
frailtyHL package for fitting survival models, and
Rense Nieuwenhuis, Manfred te Grotenhuis, and
Ben Pelzer present the influence.ME package for di-
agnostics in multilevel models. We also have two
papers on flexible and robust regression: Zhenghua
Nie and Jeffrey Racine discuss nonparametric regres-
sion splines with the crs package, while John Kloke
and Joseph McKean discuss rank-based regression
for linear models with Rfit. Finally, Kayvan Sadeghi
and Giovanni Marchetti show how the ggm package
can be used to examine the statistical properties of
mixed graphical models.

Changes to the editorial board

The end of the year also brings changes to the edi-
torial board. Heather Turner is leaving the board af-
ter four years. Heather has been on the board since
the first issue of R News and, in addition to being an
indefatigable editor, is responsible for much of the
computational infrastructure of the journal. Another
departure is Bill Venables, who has been editor of
Programmer’s Niche since the very first issue of R
News – the predecessor of The R Journal – in 2001.
The last paper handled by Bill is a survey of naming
conventions in R by Rasmus Bååth. We welcome Bet-
tina Grün, who will join the editorial board in 2013.
I shall be stepping down as Editor-in-Chief and will
be leaving this task in the capable hands of Hadley
Wickham.
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What’s in a Name?
The Importance of Naming grid Grobs
When Drawing Plots in R

by Paul Murrell

Abstract Any shape that is drawn using the
grid graphics package can have a name associ-
ated with it. If a name is provided, it is possi-
ble to access, query, and modify the shape after
it has been drawn. These facilities allow for very
detailed customisations of plots and also for very
general transformations of plots that are drawn
by packages based on grid.

Introduction

When a scene is drawn using the grid graphics pack-
age in R, a record is kept of each shape that was used
to draw the scene. This record is called a display list
and it consists of a list of R objects, one for each shape
in the scene. For example, the following code draws
several simple shapes: some text, a circle, and a rect-
angle (see Figure 1).

> library(grid)

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)))
> grid.circle(r=.25)
> grid.rect(x=3/4, width=.2, height=.5)

text circle rect

Figure 1: Some simple shapes drawn with grid.

The following code uses the grid.ls() function
to show the contents of the display list for this scene.
There is an object, called a grob (short for “graphical
object”), for each shape that we drew. The output be-
low shows what sort of shape each grob represents
and it shows a name for each grob (within square
brackets). In the example above, we did not specify
any names, so grid made some up.

> grid.ls(fullNames=TRUE)

text[GRID.text.5]
circle[GRID.circle.6]
rect[GRID.rect.7]

It is also possible to explicitly name each shape
that we draw. The following code does this by spec-
ifying the name argument in each function call (the

resulting scene is the same as in Figure 1) and call
grid.ls() again to show that the grobs on the dis-
play list now have the names that we specified.

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)),
+ name="leftText")
> grid.circle(r=.25, name="middleCircle")
> grid.rect(x=3/4, width=.2, height=.5,
+ name="rightRect")

> grid.ls(fullNames=TRUE)

text[leftText]
circle[middleCircle]
rect[rightRect]

The grid package also provides functions that al-
low us to access and modify the grobs on the display
list. For example, the following code modifies the cir-
cle in the middle of Figure 1 so that its background
becomes grey (see Figure 2). We select the grob to
modify by specifying its name as the first argument.
The second argument describes a new value for the
gp component of the circle (in this case we are modi-
fying the fill graphical parameter).

> grid.edit("middleCircle", gp=gpar(fill="grey"))

text circle rect

Figure 2: The simple shapes from Figure 1 with the
middle circle modified so that its background is grey.

The purpose of this article is to discuss why it is
useful to provide explicit names for the grobs on the
grid display list. We will see that several positive
consequences arise from being able to identify and
modify the grobs on the display list.

Too many arguments

This section discusses how naming the individual
shapes within a plot can help to avoid the problem
of having a huge number of arguments or parame-
ters in a high-level plotting function.

The plot in Figure 3 shows a forest plot , a type
of plot that is commonly used to display the results
of a meta-analysis. This plot was produced using the
forest() function from the metafor package (Viecht-
bauer, 2010).

This sort of plot provides a good example of how
statistical plots can be composed of a very large num-
ber of simple shapes. The plot in Figure 3 consists of

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859
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Figure 3: A forest plot produced by the forest() function from the metafor package.
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many different pieces of text, rectangles, lines, and
polygons.

High-level functions like forest() are extremely
useful because, from a single function call, we can
produce many individual shapes and arrange them
in a meaningful fashion to produce an overall plot.
However, a problem often arises when we want to
customise individual shapes within the plot.

For example, a post to the R-help mailing list in
August 2011 asked for a way to change the colour
of the squares in a forest plot because none of
the (thirty-three) existing arguments to forest() al-
lowed this sort of control. The reply from Wolfgang
Viechtbauer (author of metafor) states the problem
succinctly:

“The thing is, there are so many different
elements to a forest plot (squares, lines,
polygons, text, axes, axis labels, etc.), if I
would add arguments to set the color of
each element, things would really get out
of hand ...

... what if somebody wants to have a dif-
ferent color for *one* of the squares and a
different color for the other squares?”

The reality is that it is impossible to provide
enough arguments in a high-level plotting function
to allow for all possible modifications to the low-
level shapes that make up the plot. Fortunately,
an alternative is possible through the simple mech-
anism of providing names for all of the low-level
shapes.

In order to demonstrate this idea, consider the
lattice plot (Sarkar, 2008) that is produced by the fol-
lowing code and shown in Figure 4.

> library(lattice)

> xyplot(mpg ~ disp, mtcars)

This plot is simpler than the forest plot in Figure
3, but it still contains numerous individual shapes.
Anyone familiar with the lattice package will also
know that it can produce plots of much greater com-
plexity; in general, the lattice package faces a very
difficult problem if it wants to provide an argument
in its high-level functions to control every single
shape within any of its plots.

However, the lattice package also provides
names for everything that it draws. The following
code shows the contents of the grid display list after
drawing the plot in Figure 4.

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
text[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]

segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]
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Figure 4: A simple lattice scatterplot.
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Figure 5: The lattice plot from Figure 4 with the x-
axis modified using low-level grid functions.

Because everything is named, it is possible to ac-
cess any component of the plot using the low-level
grid functions. For example, the following code
modifies the x-axis label of the plot (see Figure 5).
We specify the component of the scene that we want
to modify by giving its name as the first argument
to grid.edit(). The other arguments describe the
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changes that we want to make (a new label and a
new gp setting to change the fontface).

> grid.edit("plot_01.xlab",
+ label="Displacement",
+ gp=gpar(fontface="bold.italic"))

That particular modification of a lattice plot
could easily be achieved using arguments to the
high-level xyplot() function, but the direct access to
low-level shapes allows for a much wider range of
modifications. For example, figure 6 shows a more
complex multipanel lattice barchart.
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Figure 6: A complex multipanel lattice barchart.

This is generated by the following code

> barchart(yield ~ variety | site, data = barley,
+ groups = year, layout = c(1,6),
+ stack = TRUE,
+ ylab = "Barley Yield (bushels/acre)",
+ scales = list(x = list(rot = 45)))

There are too many individual shapes in this plot to
show the full display list here, but all of the shapes
have names and the following code makes use of
those names to perform a more sophisticated plot
modification: highlighting the sixth set of bars in
each panel of the barchart (see Figure 7).

> grid.edit("barchart.pos.6.rect",
+ grep=TRUE, global=TRUE,
+ gp=gpar(lwd=3))
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Figure 7: The barchart from Figure 6 with the sixth
set of bars in each panel highlighted.

The first argument to grid.edit() this time is
not the name of a specific grob. This time we have
given a name pattern. This is indicated by the use of
the grep argument; grep=TRUE means that the change
will be made to a component that matches the name
pattern (that was given as the first argument). The
global argument is also set to TRUE, which means
that this change will be made to not just the first com-
ponent that matches the name pattern, but to all com-
ponents that match. The gp argument specifies the
change that we want to make (make the lines nice
and thick).

It would not be reasonable to expect the high-
level barchart() function to provide an argument
that allows for this sort of customisation, but, be-
cause lattice has named everything that it draws,
barchart() does not need to cater for every possible
customisation. Low-level access to individual shapes
can be used instead bceause individual shapes can be
identified by name.

Post-processing graphics

This section discusses how naming the individual
shapes within a plot allows not just minor customi-
sations, but general transformations to be applied to
a plot.

The R graphics system has always encouraged
the philosophy that a high-level plotting function is
only a starting point. Low-level functions have al-
ways been provided so that a plot can be customised
by adding some new drawing to the plot.

The previous section demonstrated that, if every
shape within a plot has a label, it is also possible
to customise a plot by modifying the existing shapes
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within a plot.

However, we can go even further than just mod-
ifying the existing parameters of a shape. In theory,
we can think of the existing shapes within a picture
as a basis for more general post-processing of the im-
age.

As an example, one thing that we can do is to
query the existing components of a plot to determine
the position or size of an existing component. This
means that we can position or size new drawing in
relation to the existing plot. The following code uses
this idea to add a rectangle around the x-axis label of
the plot in Figure 4 (see Figure 8). The grobWidth()
function is used to calculate the width of the rectan-
gle from the width of the x-axis label. The first argu-
ment to grobWidth() is the name of the x-axis label
grob. The downViewport() function is used to make
sure that we draw the rectangle in the right area on
the page.1

> xyplot(mpg ~ disp, mtcars)

> rectWidth <- grobWidth("plot_01.xlab")

> downViewport("plot_01.xlab.vp")
> grid.rect(width=rectWidth + unit(2, "mm"),
+ height=unit(1, "lines"),
+ gp=gpar(lwd=2),
+ name="xlabRect")

The display list now contains an new rectangle
grob, as shown below.

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
text[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]
segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]
rect[xlabRect]
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Figure 8: The lattice plot from Figure 4 with a rectan-
gle added around the x-axis label.

Importantly, the new grob depends on the size of
the existing x-axis label grob within the scene. For
example, if we edit the x-axis label again, as below,
the rectangle will grow to accommodate the new la-
bel (see Figure 9).

> grid.edit("plot_01.xlab",
+ label="Displacement",
+ gp=gpar(fontface="bold.italic"))
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Figure 9: The lattice plot from Figure 4 with a rectan-
gle added around the modified x-axis label.

A more extreme example of post-processing is
demonstrated in the code below. In this case, we
again query the existing x-axis label to determine its

1This downViewport() works because the grid viewports that lattice creates to draw its plots all have names too!
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width, but this time, rather than adding a rectangle,
we replace the label with a rectangle (in effect, we
“redact” the x-axis label; see Figure 10).

> xyplot(mpg ~ disp, mtcars)

> xaxisLabel <- grid.get("plot_01.xlab")
> grid.set("plot_01.xlab",
+ rectGrob(width=grobWidth(xaxisLabel) +
+ unit(2, "mm"),
+ height=unit(1, "lines"),
+ gp=gpar(fill="black"),
+ name="plot_01.xlab"))
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Figure 10: The lattice plot from Figure 4 with the x-
axis label redacted (replaced with a black rectangle).

The display list now consists of the same num-
ber of grobs as in the original plot, but now the grob
named "plot_01.xlab" is a rectangle instead of text
(see the second line of the output below).

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
rect[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]
segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]

The artificial examples shown in this section so
far have been deliberately simple in an attempt to
make the basic concepts clear, but the ideas can be
applied on a much larger scale and to greater effect.
For example, the gridSVG package (Murrell, 2011)
uses these techniques to transform static R plots into

dynamic and interactive plots for use in web pages.
It has functions that modify existing grobs on the
grid display list to add extra information, like hyper-
links and animation, and it has functions that trans-
form each grob on the grid display list to SVG code.
The following code shows a simple demonstration
where the original lattice plot is converted to an SVG
document with a hyperlink on the x-axis label. Fig-
ure 11 shows the SVG document in a web browser.

> xyplot(mpg ~ disp, mtcars)

> library(gridSVG)

> url <-
+ "http://www.mortality.org/INdb/2008/02/12/8/document.pdf"

> grid.hyperlink("plot_01.xlab", href=url)
> gridToSVG("xyplot.svg")

Figure 11: The lattice plot from Figure 4 transformed
into an SVG document with a hyperlink on the x-axis
label.

The significant part of that code is the first argu-
ment in the call to the grid.hyperlink() function,
which demonstrates the ability to specify a plot com-
ponent by name.

More sophisticated embellishments are also pos-
sible with gridSVG because the names of plot com-
ponents are exported to SVG code as id attributes of
the corresponding SVG elements. This facilitates the
development of javascript code to allow user interac-
tion with the SVG plot and allows for the possibility
of CSS styling of the SVG plot.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859
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Naming schemes

The basic message of this article is straightforward:
name everything that you draw with grid. However,
deciding what names to use—deciding on a naming
scheme—is not necessarily so easy.

The approach taken in the lattice package is to
attempt to reflect the structure of the plot in the nam-
ing scheme. For example, everything that is drawn
within a panel region has the word "panel" in its
name, along with a suffix of the form i.j to identify
the panel row and column.

The decision may be made a lot easier if a plot
is drawn from gTrees rather than simple grobs, be-
cause the gTrees reflect the plot structure already and
names for individual components can be chosen to
reflect just the “local” role of each plot component.
The naming scheme in the ggplot2 package (Wick-
ham, 2009) is an example of this approach.

In addition to the code developer deciding on a
naming scheme, the code user also faces the problem
of how to “discover” the names of the components
of a plot.

From the developer side, there is a responsi-
bility to document the naming scheme (for exam-
ple, the lattice naming scheme is described on the
packages’s R-Forge web site2). It may also be pos-
sible to provide a function interface to assist in
constructing the names of grobs (for example, the
trellis.grobname() function in lattice).

From the user side, there are tools that help to dis-
play the names of grobs in the current scene. This
article has demonstrated the grid.ls() function, but
there is also a showGrob() function, and the gridDe-
bug package (Murrell and Ly., 2011) provides some
more tools.

Caveats

The examples used for demonstrations in this arti-
cle are deliberately simplified to make explanations
clearer. This section addresses two complications
that have not been raised previously.

One issue is that, while each call to a grid draw-
ing function produces exactly one grob, a single call
to a drawing function may produce more than one
shape in the scene. In the very first example in this
article (Figure 1), the call to grid.circle() creates
one circle grob and draws one circle.

> grid.circle(r=.25, name="middleCircle")

The call to grid.text() also creates only one text
grob, but it draws three pieces of text.

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)),
+ name="leftText")

Modifying this text grob is slightly more complex
because there are three locations and three sets of
graphical parameter settings for this single grob. For
example, if we modify the text grob and supply a sin-
gle cex setting, that is applied to all pieces of text (see
Figure 12).

> grid.edit("leftText", gp=gpar(cex=2))

text circle rect

Figure 12: The simple shapes from Figure 1 with the
text grob modified using a single cex value.

If we want to control the cex for each piece of text
separately, we must provide three new settings (see
Figure 13).

> grid.edit("leftText", gp=gpar(cex=c(1, 2, 3)))

text circle rect
Figure 13: The simple shapes from Figure 1 with the
text grob modified using three distinct cex values.

Another topic that has not been mentioned is grid
viewports. This is because, although grid viewports
can also be named, they cannot be edited in the same
way as grobs (the names are only used for navigation
between viewports). Furthermore, grid does not al-
low the vp slot on a grob to be modified and the name
slot on grobs is also out of bounds. These limitations
are imposed because the consequences of allowing
modifications are either nonsensical or too complex
to currently be handled by grid.

Discussion

In summary, if we specify an explicit name for every
shape that we draw using grid, we allow low-level
access to every grob within a scene. This allows us
to make very detailed customisations to the scene,
without the need for long lists of arguments in high-
level plotting functions, and it allows us to query and
transform the scene in a wide variety of ways.

An alternative way to provide access to individ-
ual shapes within a plot is to allow the user to simply
select shapes on screen via a mouse. How does this
compare to a naming scheme?

2http://lattice.r-forge.r-project.org/documentation.php
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Selection using a mouse works well for some
sorts of modifications (see, for example, the play-
with package; Andrews, 2010), but providing access
to individual shapes by name is more efficient, more
general, and more powerful. For example, if we
write code to make modifications, referencing grobs
by name, we have a record of what we have done, we
can easily automate large numbers of modifications,
we can share our modification techniques, and we
can express more complex modifications (like “high-
light every sixth bar”).

Another alternative way to provide detailed con-
trol over a scene is simply to modify the original R
code that drew the scene. Why go to the bother of
naming grobs when we can just modify the original
R code?

If we have written the original code, then mod-
ifying the original code may be the right approach.
However, if we draw a plot using someone else’s
code (for example, if we call a lattice function), we do
not have easy access to the code that did the draw-
ing. Even though it is possible to see the code that
did the drawing, understanding it and then modi-
fying it may require a considerable effort, especially
when that code is of the size and complexity of the
code in the lattice package.

A parallel may be drawn between this idea of
naming every shape within a scene and the general
idea of markup . In a sense, what we are aiming to do
is to provide a useful label for each meaningful com-
ponent of a scene. Given tools that can select parts
of the scene based on the labels, the scene becomes a
“source” that can be transformed in many different
ways. When we draw a scene in this way, it is not
just an end point that satisfies our own goals. It also
creates a resource that others can make use of to pro-
duce new resources. When we write code to draw a
scene, we are not only concerned with producing an
image on screen or ink on a page; we also allow for
other possible uses of the scene in ways that we may
not have anticipated.
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It’s Not What You Draw,
It’s What You Don’t Draw
Drawing Paths with Holes in R Graphics

by Paul Murrell

Abstract The R graphics engine has new sup-
port for drawing complex paths via the func-
tions polypath() and grid.path(). This article
explains what is meant by a complex path and
demonstrates the usefulness of complex paths
in drawing non-trivial shapes, logos, customised
data symbols, and maps.

One of the design goals of the R graphics system is
to allow fine control over the small details of plots.
One way that the R graphics system does this is by
providing access to low-level generic graphics facili-
ties, such as the ability to draw basic shapes and the
ability to control apparently esoteric, but still useful,
features of those shapes, such as the line end style
used for drawing lines.

In R version 2.12.0, another low-level graphics fa-
cility was added to R: the ability to draw complex
paths (not just polygons).

This article describes this new facility and
presents some examples that show how complex
paths might be useful.

Drawing paths with holes

The concept of a path is similar to the concept of a
polygon: a path is defined by a series of (x,y) loca-
tions that describe the boundary of the path.

For example, the following code defines a set of
(x,y) locations that describe a simple triangle.

> x <- c(.1, .5, .9)
> y <- c(.1, .8, .1)

A triangle can be drawn from these locations us-
ing either the polypath() function from the graphics
package or, as shown below and in Figure 1, using
the grid.path() function from the grid package.

> library(grid)

> grid.path(x, y, gp=gpar(fill="grey"))

Figure 1: A triangle drawn by the grid.path() func-
tion from a set of three (x,y) locations.

As for any basic shape, it is possible to control
the colour and thickness of the path border and the
colour used to fill the interior of the path.

We can also provide more than one set of (x,y)
locations when drawing a path. The following code
provides an example, defining a new set of six lo-
cations along with an id vector that can be used to
break the locations into two groups of three.

> x <- c(.1, .5, .9,
+ .1, .2, .3)
> y <- c(.1, .8, .1,
+ .7, .6, .7)
> id <- rep(1:2, each=3)

> cbind(x, y, id)

x y id
[1,] 0.1 0.1 1
[2,] 0.5 0.8 1
[3,] 0.9 0.1 1
[4,] 0.1 0.7 2
[5,] 0.2 0.6 2
[6,] 0.3 0.7 2

These locations can be used to describe a path
that consists of two distinct triangles. The following
code draws such a path using grid.path(). The id
argument is used to identify distinct groups of loca-
tions when using grid.path().1 Figure 2 shows the
result of drawing this path.

> grid.path(x, y, id=id,
+ gp=gpar(fill="grey"))

1When using polypath(), NA values must be inserted between distinct groups of (x,y) values.
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Figure 2: Two triangles drawn by the grid.path()
function from a set of six (x,y) locations broken into
two groups of three locations.

This output looks exactly the same as the out-
put we would get from drawing the two groups
of locations as polygons, using grid.polygon() or
polygon(), but conceptually there is a difference be-
cause the path treats the two groups of locations as
defining a single shape. We can see the difference
more clearly if we move the smaller triangle so that
it lies within the larger triangle (see Figure 3).

> x <- c(.1, .5, .9,
+ .4, .5, .6)
> y <- c(.1, .8, .1,
+ .5, .4, .5)

> grid.path(x, y, id=id,
+ gp=gpar(fill="grey"))

Figure 3: On the left is a path drawn by the
grid.path() function where the boundary of the
path consists of two distinct triangles (one within the
other). The result is a single shape with a hole in it.
On the right is the result of drawing the two bound-
aries with the grid.polygon() function, which treats
the boundaries as two separate shapes. In this case,
the smaller triangle is drawn (filled in) on top of the
larger triangle.

This example demonstrates that the two triangles
together define a single shape, which is a triangular
region with a triangular hole in it. The interior of the
shape—the area that is shaded—does not include the
region within the smaller triangle.

Fill rules

There are two ways to determine the interior of a
path like this. The default is called the non-zero
winding rule . This draws an imaginary straight line
and looks at where the straight line intersects the
boundary of the shape. A count is made of how
many times the boundary is running left-to-right at
the intersection and how many times the boundary is
running right-to-left; if the two counts are the same
then we are outside the shape and if the counts are
different, we are inside the shape.

To see this more clearly, Figure 4 uses lines with
arrows to show the directions on the boundaries of
the path from Figure 3.

●

●

●

●

Figure 4: The direction of the boundaries for the path
in Figure 3.

The outer triangle boundary is clockwise and the
inner triangle boundary is anti-clockwise, so, using
the non-zero winding rule, the region within the in-
ner triangle is actually outside the path. A straight
line from inside the inner triangle to outside the
outer triangle intersects two boundaries, one going
right-to-left and one going left-to-right.

To further demonstrate this rule, the following
code defines a more complex path, this time consist-
ing of three triangles: one large clockwise triangle,
with two smaller triangles inside, one clockwise and
one anti-clockwise.

> x <- c(.1, .5, .9,
+ .4, .5, .6,
+ .4, .6, .5)
> y <- c(.1, .8, .1,
+ .5, .4, .5,
+ .3, .3, .2)
> id <- rep(1:3, each=3)

Figure 5 shows a diagram of the boundary direc-
tions and the result of drawing this path. Because
the second smaller triangle is clockwise, the region
inside that triangle is still part of the interior of the
path, according to the non-zero winding rule.

> grid.path(x, y, id=id,
+ gp=gpar(fill="grey"))

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859
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Figure 5: A path where the boundary consists of
three triangles (two smaller ones within one larger
one). The diagram on the left shows the direction of
the boundaries for the path. On the right, the path is
drawn by the grid.path() function, with the interior
of the path determined using the non-zero winding
rule.

The other rule for determining the interior of a
path is called the even-odd rule. This just draws an
imaginary straight line through the shape and counts
how many times the straight line crosses the bound-
ary of the shape. Each time a boundary is crossed,
we toggle between outside and inside the shape.

The following code draws the same path as in
Figure 5, but uses the even-odd rule to determine the
shape’s interior. This time, the result is a larger trian-
gle with two smaller triangular holes punched out of
it (see Figure 6).

> grid.path(x, y, id=id,
+ rule="evenodd",
+ gp=gpar(fill="grey"))

Figure 6: The path from Figure 5 drawn using the
even-odd fill rule.

The SVG language specification contains a nice
simple explanation and demonstration of these
fill rules; see http://www.w3.org/TR/SVG/painting.
html#FillRuleProperty.

Applications

So what can these complex paths be used for? The
possibilities are endless, but this section describes a

couple of concrete examples. The R code for these
examples can be obtained from the online resources
that accompany this article.2

A trivial observation is that complex paths allow
us to draw complex shapes. The triangle with trian-
gular holes from the previous section is an example
of a complex shape; it is not possible to describe this
shape as a simple polygon.

Another way that paths can be useful for draw-
ing complex shapes is that they allow us to combine
several simpler shapes to construct a more complex
whole. Figure 7 shows an example of this, where the
overall shape shape has a very complex outline, but
it can be constructed as a path simply by combining
circles and triangles.

Figure 7: A complex shape constructed from simple
shapes combined together to make a path.

Figure 8 shows how this shape might be used
to dramatically highlight a point of interest within
a graph (in this case, to bring attention to the data for
the Ferrari Dino in the mtcars data set).
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Figure 8: A plot with a complex path used to high-
light a special point of interest.

Another situation where the ability to draw com-
2http://www.stat.auckland.ac.nz/~paul/R/Paths/
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plex paths can be useful is if we are trying to draw
a shape that someone else has created. For example,
we might want to draw the logo of a company or an
organisation as a label on a plot.

Figure 9 shows the GNU logo. This image con-
sists of a single complex path, so we must be able to
draw such paths in order to render it correctly.

Figure 9: A complex path that describes the GNU
logo.

Figure 10 shows the GNU logo being used as a
background watermark for a lattice barchart (Sarkar,
2008).

Number of Citations per Year
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Figure 10: A plot with the GNU logo from Figure 9
as a background watermark.

Another way that we might use external complex
shapes is as data symbols on a plot. Figure 11 shows
a bus icon. Again, this bus icon is a single path so it
must be drawn using grid.path() or polypath() in
order for it to render correctly.

Figure 11: A path that describes a bus icon.

Figure 12 shows this bus icon being used as data
symbols on a lattice scatterplot of daily bus ridership
data.
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Figure 12: A plot with the bus icon from Figure 11
used as a data symbol.

Another general area where complex paths arise
is the drawing of maps. The outline of a country’s
borders or coastline represents a set of (x,y) coordi-
nates, often in a very complicated arrangement. One
situation where it can be useful to treat the map out-
line as a path is the case where a country contains
a lake; the lake can be thought of as a hole in the
country shape. Things can get quite complicated if
the lake then contains an island, and the island has a
lake, and so on. If the map is treated as a path to fill
then all of these cases are dealt with quite easily.

Figure 13 shows a map of part of the South Is-
land of New Zealand. The lake in the lower right
quadrant of this map is Lake Te Anau and at the base
of one of the westerly spurs of this lake is an island.
This map outline has been drawn as a path with a
green fill colour used to indicate land area and an
appropriate fill rule ensures that the lake is not filled
in, but the island on the lake is.
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Figure 13: A map showing an island in a lake on an
island.

Although R provides many low-level graphics fa-
cilities, such as the ability to draw complex paths,
there are still some basic tricks that it does not yet
support. One example is the ability to clip output to
an arbitrary region on the page (it is currently only
possible to clip to rectangular regions with R).

Sometimes, a missing feature like this can be
worked around by making inventive use of the ex-
isting facilities. Figure 14 shows an example of this,
where a contour of earthquake events has been over-
laid on a map of New Zealand, but the contours are
only visible over land areas.

Figure 14: A map with an overlaid contour. A path
has been used to obscure the contour where it does
not overlap with land.

This result was achieved using complex paths
(see Figure 15). The starting point is the entire con-

tour overlaid on a New Zealand map (left). A path
is constructed from the New Zealand coastline (mid-
dle), and then a bounding rectangle is added to the
path (right). This combined path allows us to fill a
region that is everything outside of the New Zealand
coastline and that can be drawn on top of the original
image to obscure those parts of the contour that are
not over land.

Caveats

The polypath() and grid.path() functions are
only supported on the pdf(), postscript(),
x11(type="cairo"), windows(), and quartz()
graphics devices (and associated raster formats).

These functions are not supported on
x11(type="Xlib"), xfig(), or pictex() and support
is not guaranteed on graphics devices provided by
extension packages.

Summary

There are new functions, polypath() and
grid.path() for drawing complex paths, including
paths with holes, in R graphics output. These func-
tions can be useful for drawing non-trivial shapes,
logos, custom data symbols, and maps.
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Figure 15: A map with a path used to obscure unwanted drawing.
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Debugging grid Graphics
by Paul Murrell and Velvet Ly

Abstract A graphical scene that has been pro-
duced using the grid graphics package consists
of grobs (graphical objects) and viewports. This
article describes functions that allow the explo-
ration and inspection of the grobs and viewports
in a grid scene, including several functions that
are available in a new package called gridDe-
bug. The ability to explore the grobs and view-
ports in a grid scene is useful for adding more
drawing to a scene that was produced using grid
and for understanding and debugging the grid
code that produced a scene.

Introduction

The grid graphics package for R contains features
that are intended to assist in the creation of flexi-
ble, complex graphical scenes, such as the plots that
are produced by lattice (Sarkar, 2008) and ggplot2
(Wickham, 2009).

Two particularly important features are view-
ports , which represent rectangular regions on the
page for drawing into, and grobs , which represent
shapes that have been drawn onto the page.

To illustrate these grid concepts, the following
code draws a simple scene consisting of a narrow
“strip” region atop a larger “panel” region, with a
rectangle boundary drawn for each region and the
top region shaded grey (see Figure 1).

> library(grid)

> stripVP <- viewport(y=1,
+ height=unit(1, "lines"),
+ just="top",
+ name="stripvp")
> panelVP <- viewport(y=0,
+ height=unit(1, "npc") -
+ unit(1, "lines"),
+ just="bottom",
+ name="panelvp")

> pushViewport(stripVP)
> grid.rect(gp=gpar(fill="grey80"),
+ name="striprect")
> upViewport()
> pushViewport(panelVP)
> grid.rect(name="panelrect")
> upViewport()

Figure 1: A scene consisting of two viewports, with
a rectangle drawn in each.

One benefit that accrues from using viewports to
draw the scene in Figure 1 is that, once the scene has
been drawn, the viewports can be revisited to add
further drawing to the scene. For example, the fol-
lowing code revisits the “strip” region and adds a
text label (see Figure 2).

> downViewport("stripvp")
> grid.text("strip text", name="striptext")
> upViewport()

strip text

Figure 2: The scene from Figure 1 with text added to
the top viewport.

One benefit that accrues from the fact that grid
creates grobs representing the shapes in a scene is
that, after the scene has been drawn, it is possible to
modify elements of the scene. For example, the fol-
lowing code modifies the text that was just drawn in
the strip region so that it is dark green, italic, and in
a serif font (see Figure 3).

modified text

Figure 3: The scene from Figure 2 with the text mod-
ified to be dark green, italic, and serif.

> grid.edit("striptext",
+ label="modified text",
+ gp=gpar(col="darkgreen",
+ fontface="italic",
+ fontfamily="serif"))
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The following code shows that it is also possible
to remove objects from a scene — this returns the
scene to its original state (Figure 1) by removing the
text that we had added above.

> grid.remove("striptext")

The importance of names

The ability to navigate within viewports in a scene
and the ability to modify grobs within a scene both
depend upon being able to unambiguously specify a
particular viewport or grob.

All viewports and grobs have a name , so speci-
fying a particular viewport or grob is simply a mat-
ter of specifying the relevant viewport name or grob
name.

In the simple example above, this is not a difficult
task because we have the code that created the scene
so we can see the names that were used. However,
when a scene has been generated by someone else’s
code, for example, a call to a lattice plotting func-
tion, it may not be very easy to determine the name
of a viewport or grob.1

Pity the developer

Problems can also arise when we want to develop
new functions that draw scenes using grid. In this
case, knowing the names of viewports and grobs is
not the problem because we have created the names.
Instead, the problem is knowing where on the page
the viewports and grobs have ended up. The result
of running error-ridden grid code can be a confusing
jumble of drawing output. In this case, it is useful
to be able to identify where on the page a particular
viewport or grob has been drawn.

Pity the student

Even when the author of a piece of grid code knows
exactly what the code is doing, and the code is be-
having correctly, it can be difficult to convey to other
people the relationship between the grid code and
the output that it produces on a page. This is another
situation where it can be useful to provide a visual
cue about the location on the page of abstract con-
cepts such as viewports and grobs and the relation-
ships between them.

This article describes a number of functions that
are provided by the grid package and the gridDe-
bug package (Murrell and Ly, 2011) to help identify
what viewports and grobs have been used to create
a scene and track exactly where each viewport and
grob has been drawn on the page. These functions
will be introduced in the following sections using
the very simple grid scene that was described above.

These introductions are then followed by a section
that looks at some more complex grid scenes in order
to demonstrate more sophisticated uses of the func-
tions, plus some alternative tools.

The grid.ls() function

A simple listing of the names of all grobs in a scene
can be produced using the grid.ls() function. For
example, the following code lists the grobs in Fig-
ure 1, which consists of just two rectangles called
"striprect" and "panelrect"

> grid.ls()

striprect
panelrect

The grid.ls() function can also be used to list
viewports in the current scene, via the viewports ar-
gument and the fullNames argument can be speci-
fied to print further information in the listing so that
it is easier to distinguish viewports from grobs. The
following code produces a more complete listing of
the scene from Figure 1 with both viewports and
grobs listed. Notice that the names are indented to
reflect the fact that some viewports are nested within
others and also to reflect the fact that the grobs are
drawn within different viewports.

> grid.ls(viewports=TRUE, fullNames=TRUE)

viewport[ROOT]
viewport[stripvp]
rect[striprect]
upViewport[1]

viewport[panelvp]
rect[panelrect]
upViewport[1]

This function is useful for at least viewing the
names of all grobs and viewports in a scene and it
gives some indication of the structure of the scene.
Even for a complex scene, such as a lattice mul-
tipanel conditioning plot it is possible, if a little
tedious, to identify important components of the
scene.

The showGrob() function

The showGrob() function displays the names of the
grobs in a scene by labelling them on the current
scene. By default, a semitransparent rectangle is
drawn to show the extent of each grob and the name
of the grob is drawn within that rectangle. For exam-
ple, the following code labels the grobs in the simple
scene from Figure 1. The resulting labelled scene is
shown in Figure 4 — there are two rectangles called
"striprect" and "panelrect".

> showGrob()

1The lattice package does provide some assistance in the form of the trellis.vpname() and trellis.grobname() functions.
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striprect

panelrect

Figure 4: The scene from Figure 1 with labelling
added by the showGrob() function to show the loca-
tions and names of the grobs used to draw the scene.

In more complex scenes, it is common for sev-
eral grobs to overlap each other so that this sort
of labelling becomes very messy. Later sections
will demonstrate how to cope with that complex-
ity using other functions and other arguments to the
showGrob() function.

The showViewport() function

The showViewport() function performs a similar task
to showGrob() except that it labels the viewports in a
scene. Again, the labelling consists of a semitrans-
parent rectangle and the name of the viewport. For
example, the following code labels the viewports in
the scene from Figure 1, which has a narrow view-
port called "stripvp" on top and a larger viewport
called "panelvp" below.

> showViewport()

panelvp

stripvp

Figure 5: The scene from Figure 1 with labelling
added by the showViewport() function to show the
locations and names of the viewports that were used
to draw the scene.

In more complex scenes, it is common for view-
ports to overlap each other, so the default output
from showViewport() is less legible. Later sections
will describe solutions to this problem using further
arguments to showViewport() as well as different de-
bugging functions.

The gridDebug package

The gridDebug package provides some additional
tools for debugging grid output. The gridTree()

function draws a scene graph from a grid scene, us-
ing the graph and Rgraphviz packages (Gentleman
et al., 2010; Gentry et al., 2010), via the gridGraphviz
package (Murrell, 2011). This is a node-and-edge
graph that contains a node for each grob and each
viewport in the current grid scene. The graph has an
edge from each child viewport to its parent viewport
and an edge from each grob to the viewport within
which the grob is drawn. The nodes are labelled with
the name of the corresponding grobs and viewports.
For example, the following code produces a scene
graph for the simple scene in Figure 1. The scene
graph is shown in Figure 6.

> library(gridDebug)

> gridTree()

ROOT

stripvp

striprect

panelvp

panelrect

Figure 6: A node-and-edge graph of the scene from
Figure 1. Both viewports are direct descendants of
the ROOT viewport and one grob is drawn in each
viewport.

This graph shows that the two viewports have
both been pushed directly beneath the ROOT viewport
(they are siblings) and that each grob has been drawn
in a separate viewport.

One advantage of this function is that it is unaf-
fected by overlapping grobs or viewports. The main
downside is that node labels become very small as
the scene becomes more complex.

More complex scenes

We will now consider a more complex scene and look
at how the various debugging functions that have
just been described can be adapted to cope with the
additional complexity. As an example, we will look
at a plot produced by the histogram() function from
the lattice package (see Figure 7).

> library(lattice)

> histogram(faithful$eruptions)

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=graph
http://cran.r-project.org/package=Rgraphviz
http://cran.r-project.org/package=gridGraphviz


22 CONTRIBUTED RESEARCH ARTICLES

faithful$eruptions

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

2 3 4 5

Figure 7: A more complex grid scene consisting of
a simple plot produced by the histogram() function
from the lattice package.

The grid.ls() function

For more complex scenes, the number of viewports
and grobs can make it difficult to consume the listing
from grid.ls() and, as viewports and grobs become
nested to greater depths, simple indenting can be in-
sufficient to convey the nesting clearly.

One solution is to specify a different formatting
function via the print argument to the grid.ls()
function. For example, the following code lists all
grobs and viewports from Figure 7, but with only
one line for each grob. The nesting of viewports is
shown by listing the full viewport path to each grob.
Figure 8 shows the resulting output.

> grid.ls(viewports=TRUE, print=grobPathListing)

Another solution is to capture (rather than just
print) the result from grid.ls(). This is a list ob-
ject containing a lot of information about the current
scene and it can be processed computationally to an-
swer more complex questions about the scene (see
Figure 9).

> sceneListing <- grid.ls(viewports=TRUE,
+ print=FALSE)

> do.call("cbind", sceneListing)

The showGrob() function

In a more complex scene, it is common for grobs to
overlap each other, which can result in a messy la-
belling from the showGrob() function. Another prob-
lem is that text grobs do not label well because the
labelling text is hard to read when overlaid on the

text that is being labelled. One possible solution is to
vary the graphical parameters used in the labelling.
For example, the following code sets the fill colour
for the grob bounding rectangles to be opaque (see
Figure 10).

> showGrob(gp=gpar(fill=rgb(1, .85, .85)))
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Figure 10: The lattice plot from Figure 7 with la-
belling added by the showGrob() function to show
the locations and names of the grobs that were used
to draw the scene.

One problem with this solution is that some
overlapping grobs are not visible at all. To solve
this, the gPath argument can be used to specify a
particular grob to label. The following code uses
this approach to label just the rectangle grob called
"plot_01.histogram.rect.panel.1.1" (the rectan-
gle grob that draws the histogram bars; see Figure
11).

> showGrob(gPath="plot_01.histogram.rect.panel.1.1")

The showViewport() function

In complex scenes, it is also very common for view-
ports to overlap each other. It is possible to dis-
play just a specific viewport with showViewport(),
by supplying a viewport path as the first argument,
but another option is to draw all viewports sepa-
rately via the leaves argument. The following code
demonstrates this approach and the result is shown
in Figure 12.

In this case, there are eight viewports to display,
so eight sub-regions have been drawn. Each sub-
region represents an entire page, within which the lo-
cation of one viewport is indicated with a shaded re-
gion. For example, the viewport "plot_01." takes up
the entire page, but the viewport "plot_01.xlab.vp"
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ROOT | plot_01.background
ROOT::plot_01.toplevel.vp::plot_01.xlab.vp | plot_01.xlab
ROOT::plot_01.toplevel.vp::plot_01.ylab.vp | plot_01.ylab
ROOT::plot_01.toplevel.vp::plot_01.strip.1.1.off.vp | plot_01.ticks.top.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.strip.left.1.1.off.vp | plot_01.ticks.left.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.strip.left.1.1.off.vp | plot_01.ticklabels.left.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.ticks.bottom.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.ticklabels.bottom.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.ticks.right.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.vp | plot_01.histogram.baseline.lines.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.vp | plot_01.histogram.rect.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.border.panel.1.1

Figure 8: A listing of the grobs and viewports from Figure 7 produced by grid.ls().

name gDepth vpDepth gPath vpPath type
1 ROOT 0 0 vpListing
2 plot_01.background 0 1 ROOT grobListing
3 plot_01.toplevel.vp 0 1 ROOT vpListing
4 plot_01.xlab.vp 0 2 ROOT::plot_01.toplevel.vp vpListing
5 plot_01.xlab 0 3 ROOT::plot_01.toplevel.vp::plot_01.xlab.vp grobListing
6 1 0 3 ROOT::plot_01.toplevel.vp::plot_01.xlab.vp vpUpListing
7 plot_01.ylab.vp 0 2 ROOT::plot_01.toplevel.vp vpListing
8 plot_01.ylab 0 3 ROOT::plot_01.toplevel.vp::plot_01.ylab.vp grobListing
9 1 0 3 ROOT::plot_01.toplevel.vp::plot_01.ylab.vp vpUpListing
10 plot_01.figure.vp 0 2 ROOT::plot_01.toplevel.vp vpListing

Figure 9: The raw result that is returned by a grid.ls() call for the scene in Figure 7. Only the first 10 lines of
information is shown.
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plot_01.histogram.rect.panel.1.1

Figure 11: The lattice plot from Figure 7 with labelling added by the showGrob() function to show the location
of grob "plot_01.histogram.rect.panel.1.1".
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only occupies a narrow strip towards the bot-
tom of the page. Some viewports, for example,
"plot_01.strip.1.1.off.vp", have zero height or
zero width so appear as just straight lines.

> showViewport(newpage=TRUE, leaves=TRUE,
+ col="black")

plot_01.
plot_01.figure.vp plot_01.panel.1.1.off.vp

plot_01.panel.1.1.vp
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Figure 12: The result of calling showViewport() to
display the viewports used to draw the scene in Fig-
ure 7, with each viewport displayed on its own in a
separate “mini page” to overcome the fact that sev-
eral viewports overlap each other.

The gridTree() function

One advantage of the gridTree() function is that it
is immune to the overlap of grobs and viewports in a
scene. This is because this sort of display emphasizes
the conceptual structure of the scene rather than re-
flecting the location of grobs and viewports on the
page.

The following code produces a scene graph for
the lattice plot from Figure 7 and the result is shown
in Figure 13.

> gridTree()

One problem that does arise with the gridTree()
function is that the grob and viewport names, which
are used to label the nodes of the scene graph, can
become too small to read.

The following code demonstrates this problem
with an example plot from the ggplot2 package. The
plot is shown in Figure 14 and the scene graph gen-
erated by gridTree() is shown in Figure 15.

> library(ggplot2)

> qplot(faithful$eruptions, binwidth=.5)
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Figure 14: A more complex grid scene consisting of
a simple plot produced by the qplot() function from
the ggplot2 package.

Although it is impossible to read the names of
individual grobs and viewports on this graph, it is
still interesting to compare the structure of this scene
with the graph from the lattice plot in Figure 13.
The graph clearly shows that the lattice package uses
two levels of viewports, but only simple grobs, while
the ggplot2 package has a single, relatively complex,
gTree that contains numerous other grobs, gTrees and
viewports.

Interactive tools

The problem of unreadable labels on a scene graph
may be alleviated by using the gridTreeTips() func-
tion, from the gridDebug package. This makes use
of the gridSVG package (Murrell and Potter, 2011)
to produce an SVG version of the scene graph with
simple interaction added so that, when the mouse
hovers over a node in the scene graph, a tooltip pops
up to show the name of the node. Figure 16 shows an
example of the output from this function (as viewed
in Firefox).
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Figure 13: A node-and-edge graph of the scene from Figure 7

Figure 15: A node-and-edge graph of the scene from Figure 14. This scene graph was produced using ggplot2
version 0.8.9. More recent versions of ggplot2 will produce a different scene graph.
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Figure 16: A node-and-edge graph of the scene
from Figure 14 in SVG format so that, when the
mouse hovers over a node on the graph, a tooltip
shows the name of the node. The mouse is
hovering over the node for the viewport called
"plot_01.toplevel.vp".

Another function from the gridDebug pack-
age, which also makes use of gridSVG, is the
grobBrowser() function. This takes any grid scene
and produces an SVG version of the scene that also
contains tooltips. In this case, whenever the mouse
hovers over a grob in the scene, a tooltip pops up to
show the name of the grob. Figure 17 shows an ex-
ample of the output from this function (as viewed in
Firefox).

Tools in other packages

The playwith package (Andrews, 2010) also pro-
vides some tools for exploring the grobs in a grid
scene. The showGrobsBB() function produces a simi-
lar result to showGrob() and identifyGrob() allows
the user to click within a normal R graphics device to
identify grobs. If the click occurs within the bound-
ing box of a grob then the name of that grob is re-
turned as the result. The result may be several grob
names if there are overlapping grobs.

Conclusions

This article has described several tools that assist
with the debugging of grid graphics code, whether
that is trying to understand someone else’s code, try-
ing to understand your own code, or trying to ex-

plain grid code to someone else.
The tools provide various ways to view the

names of grobs and viewports that were used to
draw a scene, the relationships between the grobs
and viewports, and where those grobs and viewports
end up when drawn on the page.

Each of the tools has various weaknesses, so it
may be necessary to use them in combination with
each other in order to gain a complete understand-
ing of a complex scene.
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Figure 17: The scene from Figure 14 in SVG for-
mat so that, when the mouse hovers over a grob
in the scene, a tooltip shows the name of the grob.
The mouse is hovering over one of the bars in the
histogram, which corresponds to the grob called
"plot_01.histogram.rect.panel.1.1".
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frailtyHL: A Package for Fitting Frailty
Models with H-likelihood
by Il Do Ha, Maengseok Noh and Youngjo Lee

Abstract We present the frailtyHL package for
fitting semi-parametric frailty models using h-
likelihood. This package allows lognormal or
gamma frailties for random-effect distribution,
and it fits shared or multilevel frailty models for
correlated survival data. Functions are provided
to format and summarize the frailtyHL results.
The estimates of fixed effects and frailty parame-
ters and their standard errors are calculated. We
illustrate the use of our package with three well-
known data sets and compare our results with
various alternative R-procedures.

Introduction

Frailty models with a non-parametric baseline haz-
ard have been widely adopted for the analysis of sur-
vival data (Hougaard, 2000; Duchateau and Janssen,
2008). The frailtyHL package (Ha et al., 2012) im-
plements h-likelihood procedures (Ha et al., 2001; Ha
and Lee, 2003, 2005) for frailty models. The package
fits Cox proportional hazards models (PHMs) with
random effects, or frailties. The lognormal or gamma
distribution can be adopted as the frailty distribu-
tion, corresponding to the normal or log-gamma dis-
tribution for the log frailties. H-likelihood obviates
the need for marginalization over the frailty distri-
bution, thereby providing a statistically efficient pro-
cedure for various random-effect models (Lee et al.,
2006).

The main function is frailtyHL(). For instance,

> frailtyHL(Surv(time, status) ~ x + (1|id),
+ RandDist = "Normal",
+ mord = 0, dord = 1,
+ Maxiter = 200, convergence = 10^-6,
+ varfixed = FALSE, varinit = 0.1)

fits a lognormal frailty model. The first argument
is a formula object, with the response on the left of
a ~ operator, and the terms for the fixed and ran-
dom effects on the right. The response is a survival
object as returned by the Surv function (Therneau,
2011). Here, time and status denote survival time
and censoring indicator taking value 1 or 0 for un-
censored or censored observations, respectively; x
denotes a fixed covariate and id denotes the subject
identifier. The expression (1|id) specifies a random
intercept model ((x|id) would specify a random in-
tercept, random slope model). The parameters mord
and dord are the orders of Laplace approximations to
fit the mean parameters (mord = 0 or 1) and the dis-
persion parameters (dord = 1 or 2), respectively. The

Maxiter parameter specifies the maximum number
of iterations and convergence specifies the tolerance
of the convergence criterion. If varfixed is specified
as TRUE (or FALSE), the value of one or more of the
variance terms for the frailties is fixed (or estimated)
with starting value (e.g. 0.1) given by varinit.

Previously, frailty models have been imple-
mented in several R functions such as the coxph()
function in the survival package (Therneau, 2010)
and the coxme() function in the coxme package (Th-
erneau, 2011), based on penalized partial likelihood
(PPL), the phmm() function in the phmm package
(Donohue and Xu, 2012), based on a Monte Carlo EM
(MCEM) method, and the frailtyPenal() function
in the frailtypack package (Gonzalez et al., 2012),
based on penalized marginal likelihood. The phmm
package fits one-component frailty models, although
it does allow multivariate frailties. The coxme() func-
tion can fit the multi-component model as shown in
Example 2. Results from frailtyHL are compared
with those from survival, coxme and phmm.

Recently, the h-likelihood procedures of Lee and
Nelder (1996) for fitting hierarchical generalized lin-
ear models (HGLMs) have been implemented using
the hglm() function in the hglm package (Alam et al.,
2010), the HGLMfit() function in the HGLMMM
package (Molas, 2010) and the dhglmfit() function
in the dhglm package (Noh and Lee, 2011). The
frailtyHL package is for fitting frailty models with a
non-parametric baseline hazard, providing estimates
of fixed effects, random effects, and variance compo-
nents as well as their standard errors. In addition,
it provides a statistical test for the variance compo-
nents of frailties and also three AIC criteria for the
model selection.

Frailty models

The frailtyHL package makes it possible to

1. fit models with log-normal and gamma frailty
distributions and

2. estimate variance components when the frailty
structure is shared or nested.

For illustration, we present two models below and
show how to fit these models using frailtyHL() in
the Examples section.

One-component frailty models

Suppose that data consist of right censored time-to-
event observations from q subjects (or clusters), with
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ni observations each; i = 1, . . . ,q. Let Tij be the sur-
vival time for the jth observation of the ith subject;
j = 1, . . . ,ni. Here, n = ∑i ni is the total sample size
and ni is the cluster size. Let Cij be the correspond-
ing censoring time and let yij = min{Tij,Cij} and
δij = I(Tij ≤ Cij) be the observable random variables,
where I(·) is the indicator function.

Given the common unobserved frailty for the ith
subject ui, the conditional hazard function of Tij is of
the form

λij(t|ui) = λ0(t)exp(xT
ij β)ui, (1)

where λ0(·) is an unspecified baseline hazard func-
tion and β = (β1, . . . , βp)T is a vector of regression
parameters for the fixed covariates xij. Here, the
term xT

ij β does not include an intercept term because
of identifiability. Assume that the frailties ui are in-
dependent and identically distributed (i.i.d) random
variables with a frailty parameter α; the gamma and
lognormal frailty models assume gamma and log-
normal distributions for ui, respectively. That is, our
package allows

• gamma frailty with E(ui) = 1 and var(ui) = α,
and

• lognormal frailty having vi = logui ∼ N(0,α).

The model represented by (1) is known as a shared
or one-component frailty model (Hougaard, 2000).

Multi-component frailty models

We can fit a multi-component model as below (Ha
et al., 2007):

Xβ + Z(1)v(1) + Z(2)v(2) + · · ·+ Z(k)v(k), (2)

X is the n× p model matrix, Z(r) (r = 1,2, . . . ,k) are
the n× qr model matrices corresponding to the qr× 1
frailties v(r), and v(r) and v(l) are independent for
r 6= l.

For example, the CGD data (Fleming and Har-
rington, 1991) have a multilevel structure in which
patients nested within centers have recurrent infec-
tion times.

Later, we analyze these data using model (2) with
k = 2. Here, the frailty structures are:

v(1): center frailty ∼ N(0,α1 A1),
v(2): patient frailty ∼ N(0,α2 A2),

where Ar = Ir (r = 1,2) are the qr × qr identity ma-
trices, and q1 and q2 are the number of centers and
patients, respectively. Notice that the corresponding
Z(1) to v(1) (or Z(2) to v(2)) is, respectively, a matrix of
indicator variables such that Z(1)

st = 1 (or Z(2)
st = 1) if

observation s is a member of center (or patient) t and
0 otherwise (Therneau and Grambsch, 2000). This
is called the multilevel frailty model (Yau, 2001; Ha
et al., 2007).

H-likelihood theory

The h-likelihood h (Ha et al., 2001) for frailty model
(1) is defined by

h = h(β,λ0,α) = `0 + `1, (3)

where

`0 = ∑
ij

log f (yij,δij|ui; β,λ0)

= ∑
ij

δij{logλ0(yij) + ηij} −∑
ij

Λ0(yij)exp(ηij)

is the sum of conditional log densities for yij and δij
given ui, and

`1 = ∑
i

log f (vi;α)

is the sum of log densities for vi = logui with param-
eter α. Here, ηij = xT

ij β + vi is the linear predictor for
the hazards, and

Λ0(t) =
∫ t

0
λ0(k)dk

is the baseline cumulative hazard function.
The functional form of λ0(t) in (1) is unknown;

following Breslow (1972), we consider Λ0(t) to be a
step function with jumps at the observed event times:

Λ0(t) = ∑
k:y(k)≤t

λ0k

where y(k) is the kth (k = 1, . . . , l) smallest distinct
event time among the yij’s, and λ0k = λ0(y(k)). How-
ever, the dimension of λ0 = (λ01, . . . ,λ0l)

T increases
with the sample size n. For inference, Ha et al. (2001)
proposed the use of the profile h-likelihood with λ0
eliminated, h∗ ≡ h|

λ0=λ̂0
, given by

h∗ = h∗(β,α) = `∗0 + `1, (4)

where

`∗0 = ∑
ij

log f ∗(yij,δij|ui; β)

= ∑
ij

f (yij,δij|ui; β, λ̂0)

does not depend on λ0, and

λ̂0k(β,v) =
d(k)

∑ (i,j)∈R(k)
exp(ηij)

,

are solutions of the estimating equations, ∂h/∂λ0k =
0, for k = 1, . . . , l. Here, d(k) is the number of events
at y(k) and

R(k) = R(y(k)) = {(i, j) : yij ≥ y(k)}
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is the risk set at y(k). Therneau and Grambsch
(2000) and Ripatti and Palmgren (2000) proposed an
h-likelihood (3), while using the partial likelihood
(Breslow, 1974) for `0. They call it the penalized par-
tial likelihood (PPL) hp, defined by

hp(β,v,α) =∑
ij

δijηij−

∑
k

d(k) log
{

∑
ij∈R(k)

exp(ηij)

}
+`1.

Furthermore, Ha et al. (2001) and Ha et al. (2010)
have shown that h∗ is proportional to the PPL hp be-
cause

h∗ = ∑
k

d(k) log λ̂0k + ∑
ij

δijηij −∑
k

d(k) + `1

= hp + ∑
k

d(k){logd(k) − 1},

where ∑k d(k){logd(k)− 1} is a constant that does not
depend upon unknown parameters. Notice here that
PPL hp does not depend on nuisance parameters λ0.
Thus, Lee and Nelder’s (1996; 2001) h-likelihood pro-
cedure for HGLMs can be directly used to fit frailty
models based on hp (Ha et al., 2010).

Review of estimation procedures

Lee and Nelder (1996, 2001) have proposed the use of
the Laplace approximation based on the h-likelihood
when the marginal likelihood, m = log{

∫
exp(h)dv},

is hard to obtain. To reduce the bias in small cluster
sizes higher-order approximations for the mean (β)
and the frailty variance (α) have been developed. The
lower-order approximation is computationally effi-
cient, but could have large biases when cluster sizes
are small (Ha and Lee, 2003, 2005; Ha et al., 2010).

The h-likelihood procedures use the Breslow
method for handling tied event times, while the PPL
procedures allow the Efron method. For estimating
β, the h-likelihood methods allow the Laplace ap-
proximation pv(hp) to a marginal partial likelihood
mp = log{

∫
exp(hp)dv}, but the PPL procedures do

not. For estimating α, the PPL methods use adjusted
profile h-likelihoods pv(hp) and pβ,v(hp) which give
maximum partial likelihood (MPL) and restricted
maximum partial likelihood (REMPL) estimators, re-
spectively. In contrast, the h-likelihood method uses
the restricted partial likelihood (based upon the first-
order Laplace approximation pβ,v(hp) or the second-
order Laplace approximation sβ,v(hp)) for REMPL
estimators. Here pv(hp) and pβ,v(hp) are defined as
follows:

pv(hp) = [hp −
1
2

logdet{D(hp,v)/(2π)}]|v=v̂,

where D(hp,v) = −∂2hp/∂v2 and v̂ solves ∂hp/∂v =
0, which is the first-order Laplace approximation of

mp, and

pβ,v(hp) =

[
hp −

1
2

logdet
{

D(hp, (β,v))
2π

}]∣∣∣∣
β=β̂,v=v̂,

where D(hp, (β,v)) = −∂2hp/∂(β,v)2 and (β̂, v̂)
solves ∂hp/∂(β,v) = 0, which becomes the Cox and
Reid (1987) adjusted profile marginal likelihood,
eliminating fixed effects β by conditioning their
asymptotic sufficient statistics β̂, in addition to elimi-
nating random effects v by the first-order Laplace ap-
proximation (Ha and Lee, 2003; Lee et al., 2006). The
corresponding second-order approximation is

sβ,v(hp) = pβ,v(hp)− {F(hp)/24},
with

F(hp) = tr
[
−
{

3 ∂4hp
∂v4 + 5 ∂3hp

∂v3 D(hp,v)−1 ∂3hp
∂v3

}
×D(hp,v)−2

]∣∣∣
v=v̂.

To reduce the computational burden Ha et al. (2010)
used F(h) instead of F(hp).
Table 1: Estimation criteria for h-likelihood
(HL(mord, dord)), PPL (coxph(), coxme()) and
marginal likelihood ( phmm()) for lognormal (LN)
and gamma frailty models (FM)

Criterion Literature
Method β α

HL(0,1) hp pβ,v(hp) Ha and Lee (2003)

HL(0,2) hp sβ,v(hp) Ha and Lee (2003)

HL(1,1) pv(hp) pβ,v(hp) Ha et al. (2012)

HL(1,2) pv(hp) sβ,v(hp) Ha et al. (2012)

coxph() hp pβ,v(hp) Therneau (2010)
for LN FM

coxph() hp m Therneau (2010)
for gamma FM

coxme() hp pv(hp) Therneau (2011)
for LN FM

phmm() m m Donohue and
Xu (2012)
for LN FM

Table 1 shows historical developments of estimat-
ing criteria for frailty models. The frailtyHL() func-
tion provides estimators based on the h-likelihood.
As the orders in mord and dord increase, the bias
of estimator is reduced, but the calculation becomes
computationally intensive due to the extra terms.
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We recommend the use of HL(1,1) for the lognormal
frailty and of HL(1,2) for the gamma frailty. How-
ever, HL(0,1) for the lognormal frailty and HL(0,2)
for the gamma frailty often perform well if α is not
large. Note that the variance matrices of τ̂ = (β̂, v̂)
and α̂ are directly obtained from the Hessian matri-
ces, {−∂2hp/∂τ2}−1 and {−∂2 pβ,v(hp)/∂α2}−1, re-
spectively; the frailtyHL package provides the stan-
dard errors (SEs) of α̂ as well as β̂. For the use of
standard errors of v̂− v, see Lee and Ha (2010), Lee
et al (2011) and Ha et al. (2011).

Based on the PPL methods, the coxph() and
coxme() functions, respectively, implement REMPL
and MPL estimators for α in the lognormal frailty
model, and the coxph() function the maximum like-
lihood (ML) estimators, maximizing the marginal
likelihood m, for α in the gamma frailty model.
For comparison, we present the Breslow and Efron
methods for handling ties in survival times in the
coxph() and coxme() functions; Therneau (2010) rec-
ommended the Efron method. For the lognormal
frailty the ML estimator maximizing m is available
via the phmm() function, but care must be taken to en-
sure that the MCEM algorithm has converged (Dono-
hue and Xu, 2012). However, the ML estimator can
be biased when the number of nuisance parameters
increases with the sample size (Ha et al., 2010).

Furthermore, for the lognormal frailty the
coxph() function uses the existing codes in linear
mixed models so that it misses the ∂v̂/∂α term in
solving the score equation ∂pβ,v(hp)/∂α = 0; this can
lead to an underestimation of the parameters, espe-
cially when the number of subjects q is large or cen-
soring is high (Lee et al., 2006; Ha et al., 2010). To
overcome this problem, in gamma frailty models Th-
erneau and Grambsch (2000) develop the code for the
ML estimator for α.

Fitting algorithm

Suppose that HL(0,1) is used. The fitting algorithm
is as follows:

Step 1: Take (0,0,0.1) as initial estimates of compo-
nents of (β,v,α).

Step 2: Given α̂, new estimates (β̂, v̂) are obtained
by solving the joint estimating equations
∂hp/∂(β,v) = {∂h/∂(β,v)}|λ0=λ̂0

= 0; then,
given (β̂, v̂), new estimates α̂ are obtained by
solving ∂pβ,v(hp)/∂α = 0.

Step 3: Repeat Step 2 until the maximum absolute
difference between the previous and current es-
timates for (β,v) and α is less than 10−6.

After convergence, we compute the estimates of the
standard errors of β̂ and α̂.

Illustration: kidney infection data

To demonstrate differences of various estimation
methods in small cluster size ni ≡ 2, we use the kid-
ney infection data (McGilchrist and Aisbett, 1991).
The data consist of times until the first and second
recurrences (ni ≡ 2 ) of kidney infection in 38 (q = 38)
patients using a portable dialysis machine. Each sur-
vival time (time) is the time until infection since the
insertion of the catheter. The survival times for the
same patient are likely to be related because of a
shared frailty describing the common patient’s effect.
The catheter is later removed if infection occurs and
can be removed for other reasons, which we regard
as censoring; about 24% of the data were censored.

We fit frailty models with two covariates, the sex
(1 = male; 2 = female) and age of each patient, using
the functions (frailtyHL(), coxph() , coxme() and
phmm()) in the four packages. The results are sum-
marized in Table 2.
Table 2: Comparison of different estimation methods
for the kidney infection data

Sex Age Patient
Method β̂1 (SE) β̂2 (SE) α̂ (SE)

lognormal model
HL(0,1) -1.380 0.005 0.535

(0.431) (0.012) (0.338)
HL(1,1) -1.414 0.005 0.545

(0.432) (0.012) (0.340)
coxph() -1.388 0.005 0.551

(Breslow) (0.441) (0.012) ( – )
coxph() -1.411 0.005 0.569
(Efron) (0.445) (0.013) ( – )
coxme() -1.332 0.005 0.440

(Breslow) (0.414) (0.012) ( – )
coxme() -1.355 0.004 0.456
(Efron) (0.417) (0.012) ( – )
phmm() -1.329 0.004 0.378

(0.452) (0.012) ( – )

gamma model
HL(0,2) -1.691 0.007 0.561

(0.483) (0.013) (0.280)
HL(1,2) -1.730 0.007 0.570

(0.485) (0.013) (0.281)
coxph() -1.557 0.005 0.398

(Breslow) (0.456) (0.012) ( – )
coxph() -1.587 0.005 0.412
(Efron) (0.461) (0.012) ( – )

In PPL procedures (coxph() and coxme()), the
Breslow method provides slightly smaller estimate
for α than the Efron method. In the lognormal frailty,
REMPL procedures (fraityHL() and coxph()) give
larger estimates for α than ML (phmm()) and MPL
(coxme()) procedures. However, both ML and MPL
estimates from phmm() and coxme() are somewhat
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different when cluster size is small, ni ≡ 2 for all i.
For the gamma frailty, coxph() uses the ML proce-
dure, but it still gives smaller estimate for α than the
REMPL (h-likelihood) procedures. Compared with
the h-likelihood methods, PPL methods are compu-
tationally more efficient, but could have larger biases
(Ha et al., 2010).

Potential future developments

The current version of the frailtyHL package allows
multi-component (multilevel) frailties. Allowance
for correlation (Ha et al., 2011) between random ef-
fects, for example correlations between random cen-
ter effect and random treatment effect, is currently
in progress. Other developments include dispersion
frailty models based on double HGLMs (Lee and
Nelder, 2006), which allow fixed and random effects
in dispersion parts (i.e. variance of random effects)
of the model as well as the hazard functions, and
joint modelling (Ha et al, 2003) of HGLMs and frailty
models.

Examples

Example 1: Lognormal and gamma frailty
models on rat data

The data set presented by Mantel et al. (1977) is based
on a tumorigenesis study of 50 (q = 50) litters of fe-
male rats. For each litter, one rat was selected to re-
ceive the drug and the other two rats were placebo-
treated controls (ni ≡ 3). Here each litter is treated
as a cluster. The survival time (time) is the time to
development of tumor, measured in weeks. Death
before occurrence of tumor yields a right-censored
observation; forty rats developed a tumor, leading to
censoring of about 73%. The survival times for rats
in a given litter may be correlated due to a random
effect representing shared genetic or environmental
effects.

We fit frailty models with one covariate, rx (1 =
drug; 0 = placebo), using frailtyHL(). Below, we
present the code and results for the lognormal frailty
model with HL(1,1). The output from the R code
shows that the effect of rx is significant (t-value =
2.823 with p-value = 0.005). That is, the rx group
has a significantly higher risk than in control group.
Here, the variance estimate of the frailty is α̂ = 0.427
(with SE = 0.423).

Note that although we report the SE of α, one
should not use it for testing the absence of frailty
α = 0 (Vaida and Xu, 2000). Such a null hypothesis
is on the boundary of the parameter space, so that
the critical value of an asymptotic (χ2

0 + χ2
1)/2 distri-

bution is 2.71 at 5% significant level (Lee et al., 2006;
Ha et al., 2011). The difference in deviance (based on
REMPL)−2pβ,v(hp) between the Cox model without

frailty and the lognormal frailty model is 364.15 −
362.56 = 1.59(< 2.71), indicating that the frailty ef-
fect is non-significant, i.e. α = 0. Here, the results
from fitting the Cox model without frailty are avail-
able by adding the two arguments varfixed = TRUE
and varinit = 0 in the frailtyHL(): see below.

> library(survival)
> data(rats)
> frailtyHL(Surv(time,status) ~ rx + (1|litter),
+ data = rats,
+ varfixed = TRUE, varinit = 0)

iteration :
4

convergence :
4.801639e-09

[1] "converged"
[1] "Results from the Cox model"
[1] "Number of data : "
[1] 150
[1] "Number of event : "
[1] 40
[1] "Model for conditional hazard : "
Surv(time, status) ~ rx + (1 | litter)
[1] "Method : HL(0,1)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
rx 0.8982 0.3174 2.83 0.004655
[1] "Estimates from the dispersion model"

Estimate Std. Error
litter "0" "NULL"

-2h0 -2*hp -2*p_b,v(hp)
[1,] 363.69 363.69 364.15

cAIC mAIC rAIC
[1,] 365.69 365.69 364.15

> frailtyHL(Surv(time,status) ~ rx + (1|litter),
+ data = rats, RandDist = "Normal",
+ mord = 1, dord = 1)

iteration :
87

convergence :
9.97616e-07

[1] "converged"
[1] "Results from the log-normal frailty model"
[1] "Number of data : "
[1] 150
[1] "Number of event : "
[1] 40
[1] "Model for conditional hazard : "
Surv(time, status) ~ rx + (1 | litter)
[1] "Method : HL(1,1)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
rx 0.9107 0.3226 2.823 0.004754
[1] "Estimates from the dispersion model"

Estimate Std. Error
litter 0.4272 0.4232

-2h0 -2*hp -2*p_v(hp) -2*p_b,v(hp)
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[1,] 335.97 397.36 362.14 362.56
cAIC mAIC rAIC

[1,] 362.22 366.14 364.56

The code and results for the gamma frailty model
with HL(1,2) are presented below. The output shows
that these results are similar to those of the lognor-
mal frailty, particularly for estimation of β. The de-
viance difference (based on REMPL) between the
Cox model and gamma frailty model using the
second-order approximation −2sβ,v(hp) is 364.15 −
362.12 = 2.03(< 2.71), again indicating the absence
of frailty effect (i.e. α = 0) as evident in the lognor-
mal frailty model.

> frailtyHL(Surv(time,status) ~ rx + (1|litter),
+ data = rats, RandDist = "Gamma",
+ mord = 1, dord = 2)

iteration :
170

convergence :
9.567765e-07

[1] "converged"
[1] "Results from the gamma frailty model"
[1] "Number of data : "
[1] 150
[1] "Number of event : "
[1] 40
[1] "Model for conditional hazard : "
Surv(time, status) ~ rx + (1 | litter)
[1] "Method : HL(1,2)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
rx 0.9126 0.3236 2.82 0.004806
[1] "Estimates from the dispersion model"

Estimate Std. Error
litter 0.5757 0.5977

-2h0 -2*hp -2*p_v(hp) -2*s_v(hp)
[1,] 331.60 413.85 365.35 361.71

-2*p_b,v(hp) -2*s_b,v(hp)
365.77 362.12
cAIC mAIC rAIC

[1,] 365.30 365.71 364.12

For the selection of a model among nested or
non-nested models such as lognormal and gamma
frailty models, we may use three Akaike informa-
tion criteria (AIC) (Lee et al., 2006; Donohue et al.,
2011; Ha et al., 2007) based on conditional likelihood,
marginal likelihood and restricted likelihood, respec-
tively, defined by

cAIC = −2h0 + 2dfc,
mAIC = −2pv(hp) + 2dfm,

rAIC = −2pβ,v(hp) + 2dfr,

where h0 = `∗0 in (4), and

dfc = trace
{

D−1(hp, (β,v))D(h0, (β,v))
}

is an ‘effective degrees of freedom adjustment’
for estimating the fixed and random effects, com-
puted using the Hessian matrices D(hp, (β,v)) =

−∂2hp/∂(β,v)2 and D(h0, (β,v)) = −∂2h0/∂(β,v)2.
Note here that dfm is the number of fixed param-
eters and dfr is the number of dispersion parame-
ters (Ha et al., 2007). For calculation of the mAIC
and rAIC of gamma frailty model using HL(0,2) or
HL(1,2), we use the corresponding second-order ap-
proximations, defined by mAIC = −2sv(hp) + 2dfm
and rAIC = −2sβ,v(hp) + 2dfr. We select a model to
minimize the AIC values among models. If the AIC
difference is larger than 1 the choice can be made
(Sakamoto et al., 1986). However, if the difference
is less than 1 a simpler model can be selected by a
parsimony principle (Donohue et al., 2011).

In the data set, in the Cox model cAIC=365.69,
mAIC=365.69 and rAIC=364.15, and in the log-
normal frailty model cAIC=362.22, mAIC=366.14
and rAIC=364.56, and in the gamma frailty model
cAIC=365.30, mAIC=365.71 and rAIC=364.12. The
likelihood tests based upon the REMPL showed the
absence of frailty effect (α = 0), so that mAIC and
rAIC of all the three models are similar. Thus, we
may choose the parsimonious Cox model. However,
the cAIC selects the lognormal model, indicating that
this model could give better prediction.

Example 2: Multilevel frailty models on
CGD infection data

The CGD data set presented by Fleming and Har-
rington (1991) consists of a placebo-controlled ran-
domized trial of gamma interferon (rIFN-g) in the
treatment of chronic granulomatous disease (CGD).
128 patients (id) from 13 centers (q1 = 13,q2 = 128)
were tracked for around 1 year. The number (i.e.
cluster size) of patients per center ranged from 4 to
26. The survival times (tstop-tstart) are the recur-
rent infection times of each patient from the different
centers. Censoring occurred at the last observation
for all patients, except one, who experienced a seri-
ous infection on the day he left the study; in the CGD
study about 63% of the data were censored. The re-
current infection times for a given patient are likely
to be correlated. However, each patient belongs to
one of the 13 centers; hence, the correlation may also
be attributed to a center effect.

Ignoring important random components may
render invalid many of the traditional statistical anal-
ysis techniques. We fit a multilevel lognormal frailty
model with two frailties and a single covariate, treat
(rIFN-g, placebo), using frailtyHL(). Here, the two
frailties are random center and patient effects. The
code and results using HL(1,1) are provided below.
The output shows that the effect of treatment is sig-
nificant (t-value = -3.476 with p-value < 0.001), in-
dicating that rIFN-g significantly reduces the rate of
serious infection in CGD patients. The estimate of
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variance of patient frailty (α̂2 = 1.002) is considerably
larger than variance of center frailty (α̂1 = 0.030), in-
dicating that the random-patient effect is more het-
erogeneous.

> library(survival)
> data(cgd)
> frailtyHL(Surv(tstop-tstart,status) ~ treat +
+ (1|center) + (1|id),
+ data = cgd,
+ RandDist = "Normal", mord = 1, dord = 1)

iteration :
157

convergence :
9.336249e-07

[1] "converged"
[1] "Results from the log-normal frailty model"
[1] "Number of data : "
[1] 203
[1] "Number of event : "
[1] 76
[1] "Model for conditional hazard : "
Surv(tstop-tstart,status)~treat+(1|center)+(1|id)
[1] "Method : HL(1,1)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
treatrIFN-g -1.184 0.3407 -3.476 0.0005085
[1] "Estimates from the dispersion model"

Estimate Std. Error
center 0.02986 0.1572
id 1.00235 0.5089

-2h0 -2*hp -2*p_v(hp) -2*p_b,v(hp)
[1,] 603.30 853.66 692.63 692.95

cAIC mAIC rAIC
[1,] 684.92 698.63 696.95

For testing the absence of a random component
(α1 = 0 or α2 = 0), we use the deviance based on
REMPL, −2pβ,v(hp), and fit the following four mod-
els including the Cox model and three lognormal
frailty models using HL(1,1) method,

M1: Cox model without frailty (α1 = 0,α2 = 0) has
−2pβ,v(hp) = 707.48,

M2: model without patient effect (α1 > 0,α2 = 0) has
−2pβ,v(hp) = 703.66,

M3: model without center effect (α1 = 0,α2 > 0) has
−2pβ,v(hp) = 692.99, and

M4: multilevel model above requiring both pa-
tient and center effects (α1 > 0,α2 > 0) has
−2pβ,v(hp) = 692.95.

The deviance difference between M3 and M4 is
692.99− 692.95 = 0.04 , which is not significant at a
5% level (χ2

1,0.10 = 2.71), indicating the absence of the
random-center effects, i.e. α1 = 0. The deviance dif-
ference between M2 and M4 is 703.66-692.95=10.71,
indicating that the random-patient effects are neces-
sary, i.e. α2 > 0. In addition, the deviance difference

between M1 and M3 is 707.48-692.99=14.49, indicat-
ing that the random-patient effects are indeed neces-
sary with or without random-center effects.

Let us choose a final model using information cri-
teria. For M1 we have cAIC=708.68, mAIC=708.68
and rAIC=707.48; for M2 cAIC=702.96, mAIC=706.88
and rAIC=705.66; for M3 cAIC=684.84, mAIC=696.68
and rAIC=694.99; for M4 cAIC=684.92, mAIC=698.63
and rAIC=696.95. All of the three criteria choose M3
in the CGD data set.

Comparison of results with alternative
procedures

Using the examples in the previous section, we com-
pare the outcomes from frailtyHL and other pack-
ages. We consider the three functions ( coxph(),
coxme() and phmm()) for the lognormal frailty model
and the coxph() function for the gamma frailty
model.

Example 1: Rat data
The codes of coxph(), coxme() and phmm() for fitting
lognormal frailty model are, respectively, as follows:

>coxph(Surv(time, status) ~ rx +
+ frailty(litter, dist = "gauss"),
+ method = "breslow", rats)

> coxme(Surv(time, status) ~ rx + (1|litter),
+ ties = "breslow", rats)

> phmm(Surv(time, status) ~ rx + (1|litter),
+ data = rats, Gbs = 2000, Gbsvar = 3000,
+ VARSTART = 1, NINIT = 10,
+ MAXSTEP = 200, CONVERG=90)

Table 3 summarizes the estimation results. Even
though cluster size ni ≡ 3 is not large, the results are
similar. For example, MPL and ML estimates for α
from coxme() and phmm() are somewhat different in
Table 2 when ni ≡ 2, while they become similar in
Table 3.

Next, the code of coxph() for fitting the gamma
frailty model is below:

> coxph(Surv(time, status) ~ rx +
+ frailty(litter, dist = "gamma"),
+ method = "breslow", rats)

The results of frailtyHL() (HL(0,2), HL(1,2)) and
coxph() for gamma frailty are also presented in Ta-
ble 3. For the estimation of β both results from
frailtyHL() and coxph() are similar, but for α they
are somewhat different. That is, our REMPL esti-
mates from frailtyHL() (α̂ = 0.575 with HL(0,2) and
α̂ = 0.576 with HL(1,2)) are somewhat larger than the
ML estimates from coxph() (α̂ = 0.474 with Breslow
method and α̂ = 0.499 with Efron method).
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Table 3: Comparison of different estimation methods
for the rat data

Rx Litter
Method β̂ (SE) α̂ (SE)

lognormal model
HL(0,1) 0.906 (0.323) 0.427 (0.423)

HL(1,1) 0.911 (0.323) 0.427 (0.423)

coxph() 0.905 (0.322) 0.395 ( – )
(Breslow)
coxph() 0.913 (0.323) 0.412 ( – )
(Efron)
coxme() 0.905 (0.322) 0.406 ( – )

(Breslow)
coxme() 0.913 (0.323) 0.426 ( – )
(Efron)
phmm() 0.920 (0.326) 0.449 ( – )

gamma model
HL(0,2) 0.908 (0.324) 0.575 (0.598)

HL(1,2) 0.913 (0.324) 0.576 (0.598)

coxph() 0.906 (0.323) 0.474 ( – )
(Breslow)
coxph() 0.914 (0.323) 0.499 ( – )
(Efron)

Example 2: CGD data
The code of the coxme() function for fitting multi-
level lognormal frailty model is as follows:

> coxme(Surv(tstop - tstart,status) ~
+ treat + (1|center) + (1|id),
+ ties = "breslow", cgd)

The results of frailtyHL()(HL(0,1), HL(1,1)) and
coxme() are summarized in Table 4. The results from
HL and PPL methods for frailty parameters become
more similar because the cluster sizes (the number of
patients from different centers) are somewhat large,
ranging from 4 to 26.
Table 4: Comparison of different estimation methods
for the CGD data

Treat Center Patient
Method β̂ (SE) α̂1 (SE) α̂2 (SE)

lognormal model
HL(0,1) -1.074 0.026 0.982

(0.335) (0.153) (0.501)
HL(1,1) -1.184 0.030 1.002

(0.341) (0.157) (0.509)
coxme() -1.074 0.033 0.939

(Breslow) (0.333) ( – ) ( – )
coxme() -1.074 0.032 0.947
(Efron) (0.333) ( – ) ( – )

Summary

The h-likelihood method offers novel possibilities
to fit various models with random effects. The
frailtyHL package for frailty models eliminates the
nuisance parameters λ0 in the h-likelihood (3) by
profiling. Such models have important applications
in multi-center clinical study (Vaida and Xu, 2000),
meta analysis (Rondeau et al., 2008), and genetic
analysis (Lee et al., 2006). Therefore, this package can
be potentially adopted by statisticians in several dif-
ferent fields.
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influence.ME: Tools for Detecting
Influential Data in Mixed Effects Models
by Rense Nieuwenhuis, Manfred te Grotenhuis, and Ben
Pelzer

Abstract influence.ME provides tools for de-
tecting influential data in mixed effects mod-
els. The application of these models has become
common practice, but the development of diag-
nostic tools has lagged behind. influence.ME
calculates standardized measures of influential
data for the point estimates of generalized mixed
effects models, such as DFBETAS, Cook’s dis-
tance, as well as percentile change and a test for
changing levels of significance. influence.ME
calculates these measures of influence while ac-
counting for the nesting structure of the data.
The package and measures of influential data
are introduced, a practical example is given, and
strategies for dealing with influential data are
suggested.

The application of mixed effects regression models
has become common practice in the field of social sci-
ences. As used in the social sciences, mixed effects re-
gression models take into account that observations
on individual respondents are nested within higher-
level groups such as schools, classrooms, states, and
countries (Snijders and Bosker, 1999), and are often
referred to as multilevel regression models. Despite
these models’ increasing popularity, diagnostic tools
to evaluate fitted models lag behind.

We introduce influence.ME (Nieuwenhuis,
Pelzer, and te Grotenhuis, 2012), an R-package
that provides tools for detecting influential cases in
mixed effects regression models estimated with lme4
(Bates and Maechler, 2010). It is commonly accepted
that tests for influential data should be performed
on regression models, especially when estimates are
based on a relatively small number of cases. How-
ever, most existing procedures do not account for
the nesting structure of the data. As a result, these
existing procedures fail to detect that higher-level
cases may be influential on estimates of variables
measured at specifically that level.

In this paper, we outline the basic rationale on de-
tecting influential data, describe standardized mea-
sures of influence, provide a practical example of the
analysis of students in 23 schools, and discuss strate-
gies for dealing with influential cases. Testing for
influential cases in mixed effects regression models
is important, because influential data negatively in-
fluence the statistical fit and generalizability of the
model. In social science applications of mixed mod-
els the testing for influential data is especially im-
portant, since these models are frequently based on

large numbers of observations at the individual level
while the number of higher level groups is relatively
small. For instance, Van der Meer, te Grotenhuis, and
Pelzer (2010) were unable to find any country-level
comparative studies involving more than 54 coun-
tries. With such a relatively low number of coun-
tries, a single country can easily be overly influen-
tial on the parameter estimates of one or more of the
country-level variables.

Detecting Influential Data

All cases used to estimate a regression model exert
some level of influence on the regression parameters.
However, if a single case has extremely high or low
scores on the dependent variable relative to its ex-
pected value — given other variables in the model,
one or more of the independent variables, or both
— this case may overly influence the regression pa-
rameters by ’pulling’ the estimated regression line
towards itself. The simple inclusion or exclusion of
such a single case may then lead to substantially dif-
ferent regression estimates. This runs against dis-
tributional assumptions associated with regression
models, and as a result limits the validity and gener-
alizability of regression models in which influential
cases are present.

The analysis of residuals cannot be used for the
detection of influential cases (Crawley, 2007). Cases
with high residuals (defined as the difference between
the observed and the predicted scores on the depen-
dent variable) or with high standardized residuals
(defined as the residual divided by the standard de-
viation of the residuals) are indicated as outliers.
However, an influential case is not always an out-
lier. On the contrary: a strongly influential case dom-
inates the regression model in such a way, that the
estimated regression line lies closely to this case. Al-
though influential cases thus have extreme values
on one or more of the variables, they can be onliers
rather than outliers. To account for this, the (standard-
ized) deleted residual is defined as the difference be-
tween the observed score of a case on the dependent
variable, and the predicted score from the regression
model that is based on data from which that case was
removed.

Just as influential cases are not necessarily out-
liers, outliers are not necessarily influential cases.
This also holds for deleted residuals. The reason
for this is that the amount of influence a case ex-
erts on the regression slope is not only determined
by how well its (observed) score is fitted by the spec-
ified regression model, but also by its score(s) on the
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independent variable(s). The degree to which the
scores of a case on the independent variable(s) are
extreme is indicated by the leverage of this case. A
higher leverage means more extreme scores on the
independent variable(s), and a greater potential of
overly influencing the regression outcomes. How-
ever, if a case has very extreme scores on the inde-
pendent variable(s) but is fitted very well by a regres-
sion model, and if this case has a low deleted (stan-
dardized) residual, this case is not necessarily overly
influencing the outcomes of the regression model.

Since neither outliers, nor cases with a high lever-
age, are necessarily influential, a different procedure
is required for detecting influential cases. The basic
rationale behind measuring influential cases is based
on the principle that when single cases are iteratively
omitted from the data, models based on these data
should not produce substantially different estimates.
If the model parameters change substantially after a
single case is excluded, this case may be regarded
as too influential. However, how much change in
the model parameters is acceptable? To standard-
ize the assessment of how influential a single case
is, several measures of influence are commonly used.
First, DFBETAS is a standardized measure of the ab-
solute difference between the estimate with a partic-
ular case included and the estimate without that par-
ticular case (Belsley, Kuh, and Welsch, 1980). Second,
Cook’s distance provides an overall measurement of
the change in all parameter estimates, or a selection
thereof (Cook, 1977). In addition, we introduce the
measure of percentile change and a test for changing
levels of significance of the fixed parameters.

Up to this point, this discussion on influential
data was limited to how single cases can overly in-
fluence the point estimates (or BETAS) of a regres-
sion model. Single cases, however, can also bias the
confidence intervals of these estimates. As indicated
above, cases with high leverage can be influential
because of their extreme values on the independent
variables, but not necessarily are. Cases with high
leverage but a low deleted residual compress stan-
dard errors, while cases with low leverage and a high
deleted residual inflate standard errors. Inferences
made to the population from models in which such
cases are present may be incorrect.

Detecting Influential Data in Mixed Ef-
fects Models

Other options are available in R that help evaluat-
ing the fit of regression models, including the de-
tection of influential data. The base R installation
provides various plots for regression models, includ-
ing but not limited to plots showing residuals versus
the fitted scores, Cook’s distances, and the leverage
versus the deleted residuals. The latter plot can be
used to detect cases that affect the inferential prop-
erties of the model, as discussed above. These plots,

however, are not available for mixed effects models.
The LMERConvenienceFunctions package provides
model criticism plots, including the density of the
model residuals and the fitted values versus the stan-
dardized residuals (Tremblay, 2012). However, while
this package works with the lme4 package, it only is
applicable for linear mixed effects models.

The influence.ME package introduced here con-
tributes to these existing options, by providing sev-
eral measures of influential data for generalized mixed
effects models. The limitation is that, unfortunately,
as far as we are aware, the measure of leverage was
not developed for generalized mixed effects mod-
els. Consequently, the current installment of influ-
ence.ME emphasizes detecting the influence of cases
on the point estimates of generalized mixed effect
models. It does, however, provide a basic test for de-
tecting whether single cases change the level of sig-
nificance of an estimate, and therefore the ability to
make inferences from the estimated model.

To apply the logic of detecting influential data to
generalized mixed effects models, one has to mea-
sure the influence of a particular higher level group
on the estimates of a predictor measured at that level.
The straightforward way is to delete all observations
from the data that are nested within a single higher
level group, then re-estimate the regression model,
and finally evaluate the change in the estimated re-
gression parameters. This procedure is then repeated
for each higher-level group separately.

The influence function in the influence.ME
package performs this procedure automatically, and
returns an object containing information on the pa-
rameter estimates excluding the influence of each
higher level group separately. The returned object of
class "estex" (ESTimates EXcluding the influence of a
group) can then be passed on to one of the functions
calculating standardized measures of influence (such
as DFBETAS and Cook’s Distance, discussed in more
detail in the next section). Since the procedure of
the influence function entails re-estimating mixed
effects models several times, this can be computa-
tionally intensive. Unlike the standard approach in
R, we separated the estimation procedure from cal-
culating the measures of influence themselves. This
allows the user to process a single model once using
the influence function, and then to evaluate it using
various measures and plots of influence.

In detecting influential data in mixed effects mod-
els, the key focus is on changes in the estimates of
variables measured at the group-level. However,
most mixed effects regression models estimate the ef-
fects of both lower-level and higher-level variables
simultaneously. Langford and Lewis (1998) devel-
oped a procedure in which the mixed effects model
is modified to neutralize the group’s influence on
the higher-level estimate, while at the same time al-
lowing the lower-level observations nested within
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that group to help estimate the effects of the lower-
level predictors in the model. For each higher-level
unit evaluated based on this method, the intercept-
vector of the model is set to 0, and an (additional)
dummy variable is added to the model, with score
1 for the respective higher level case. This way,
the case under investigation does not contribute to
the variance of the random intercept, nor to the ef-
fects of variables measured at the group-level. in-
fluence.ME provides this functionality, which is ac-
cessed by specifying delete=FALSE as an option to
the influence function. As a result of the specific
modification of the model-specification, this specific
procedure suggested by Langford and Lewis (1998)
does not work when factor-variables are used in the
regression model.

Finally, influence.ME also allows for detecting
the influence of lower-level cases in the mixed ef-
fects model. In social science applications of mixed
effects models, with a great number of lower-level
observations nested in a limited number of groups,
this will not always be feasible. Detecting influence
of lower-level observations is supported for applica-
tions in various disciplines where mixed effects mod-
els are typically applied to only a limited number of
observations per group. This procedure is accessed
by specifying obs=TRUE as an option to the influence
function. The influence function can either deter-
mine the influence of higher-level cases, or of single
observations, but not both at the same time.

The Outcome Measures

The influence function described above returns an
object with information on how much the parame-
ter estimates in a mixed effects model change, af-
ter the (influence of) observations of higher-level
groups and their individual-level observations were
removed from it iteratively. This returned object can
then be passed on to functions that calculate stan-
dardized measures of influence. influence.ME offers
four such measures, which are detailed in this sec-
tion.

DFBETAS

DFBETAS is a standardized measure that indicates
the level of influence observations have on single
parameter estimates (Fox, 2002). Regarding mixed
models, this relates to the influence a higher-level
unit has on the parameter estimate. DFBETAS is cal-
culated as the difference in the magnitude of the pa-
rameter estimate between the model including and
the model excluding the higher level case. This abso-
lute difference is divided by the standard error of the
parameter estimate excluding the higher level unit
under investigation:

DFBETASij =
γ̂i − γ̂i(−j)

se
(

γ̂i(−j)

)
in which i refers to the parameter estimate, and j the
higher-level group, so that γ̂i represents the original
estimate of parameter i, and γ̂i(−j) represents the es-
timate of parameter i, after the higher-level group j
has been excluded from the data.

In influence.ME, values for DFBETAS in mixed
effects models can be calculated using the func-
tion dfbetas, which takes the object returned
from influence as input. Further options include
parameters to provide a vector of index numbers
or names of the selection of parameters for which
DFBETAS is to be calculated. The default option of
dfbetas is to calculate DFBETAS for estimates of all
fixed effects in the model.

As a rule of thumb, a cut-off value is given for
DFBETAS (Belsley et al., 1980):

2/
√

n

in which n, the number of observations, refers to the
number of groups in the grouping factor under eval-
uation (and not to the number of observations nested
within the group under investigation). Values ex-
ceeding this cut-off value are regarded as overly in-
fluencing the regression outcomes for that specific es-
timate.

Cook’s Distance

Since DFBETAS provides a value for each parame-
ter and for each higher-level unit that is evaluated,
this often results in quite a large number of val-
ues to evaluate (Fox, 2002). An alternative is pro-
vided by Cook’s distance, a commonly used mea-
sure of influence. Cook’s distance provides a sum-
mary measure for the influence a higher level unit
exerts on all parameter estimates simultaneously, or
a selection thereof. A formula for Cook’s Distance
is provided (Snijders and Bosker, 1999; Snijders and
Berkhof, 2008):

C0F
j =

1
r + 1

(
γ̂− γ̂(−j)

)′
Σ̂−1

F

(
γ̂− γ̂(−j)

)
in which γ̂ represents the vector of original param-
eter estimates, γ̂(−j)the parameter estimates of the
model excluding higher-level unit j, and Σ̂F repre-
sents the covariance matrix. In influence.ME, the
covariance matrix of the model excluding the higher-
level unit under investigation j is used. Finally, r is
the number of parameters that are evaluated, exclud-
ing the intercept vector.

As a rule of thumb, cases are regarded as too in-
fluential if the associated value for Cook’s Distance
exceeds the cut-off value of (Van der Meer et al.,
2010):
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4/n

in which n refers to the number of groups in the
grouping factor under evaluation.

In influence.ME, values for Cook’s distance in
mixed effects models are calculated using the func-
tion cooks.distance, which takes the object returned
from influence as input. Further options include
parameters to provide a vector of index numbers or
names of the parameters for which Cook’s Distance
is to be calculated. In addition, the user can specify
sort=TRUE to have the values for Cook’s distance re-
turned in descending order.

As a final note, it is pointed out that if Cook’s dis-
tance is calculated based on a single parameter, the
Cook’s distance equals the squared value of DFBE-
TAS for that parameter. This is also reflected in their
respective cut-off values:√

4
n
=

2√
n

Percentile Change

Depending upon the goal for which the mixed model
is estimated (prediction vs. hypothesis testing), the
use of formal measures of influence as DFBETAS and
Cook’s distance may be less desirable. The reason
for this is that based on these measures it is not im-
mediately clear to what extent parameter estimates
change. For substantive interpretation of the model
outcomes, the relative degree to which a parameter
estimate changes may provide more meaningful in-
formation. A simple alternative is therefore offered
by the function pchange, which takes the same input-
options as the dfbetas function. For each higher-
level group, the percentage of change is calculated
as the absolute difference between the parameter es-
timate both including and excluding the higher-level
unit, divided by the parameter estimate of the com-
plete model and multiplied by 100%. A percentage
of change is returned for each parameter separately,
for each of the higher-level units under investigation.
In the form of a formula:(

γ̂− γ̂(−j)

) 1
γ̂
∗ 100%

No cut-off value is provided, for determining
what percent change in parameter estimate is con-
sidered too large will primarily depend on the goal
for which the model was estimated and, more specif-
ically, the nature of the hypotheses that are tested.

Test for changes in significance

As discussed above, even when cases are not influen-
tial on the point estimates (BETAS) of the regression

model, cases can still influence the standard errors of
these estimates. Although influence.ME cannot pro-
vide the leverage measure to detect this, it provides
a test for changes in the statistical significance of the
fixed parameters in the mixed effects model.

The sigtest function tests whether excluding the
influence of a single case changes the statistical sig-
nificance of any of the variables in the model. This
test of significance is based on the test statistic pro-
vided by the lme4 package. The nature of this statis-
tic varies between different distributional families in
the generalized mixed effects models. For instance,
the t-statistic is related to a normal distribution while
the z-statistic is related to binomial distributions.

For each of the cases that are evaluated, the test
statistic of each variable is compared to a test-value
specified by the user. For the purpose of this test,
the parameter is regarded as statistically significant
if the test statistic of the model exceeds the specified
value. The sigtest function reports for each variable
the estimated test statistic after deletion of each eval-
uated case, whether or not this updated test statistic
results in statistical significance based on the user-
specified value, and whether or not this new statis-
tical significance differs from the significance in the
original model. So, in other words, if a parameter
was statistically significant in the original model, but
is no longer significant after the deletion of a specific
case from the model, this is indicated by the output
of the sigtest function. It is also indicated when an
estimate was not significant originally, but reached
statistical significance after deletion of a specific case.

Plots

All four measures of influence discussed above, can
also be plotted. The plot function takes the output
of the influence function to create a dotplot of a se-
lected measure of influence (cf. Sarkar, 2008). The
user can specify which measure of influence is to
be plotted using the which= option. The which= op-
tion defaults to "dfbetas". Other options are to se-
lect "cook" to plot the Cook’s distances, "pchange"
to plot the percentage change, and "sigtest" to plot
the test statistic of a parameter estimate after deletion
of specific cases.

All plots allow the output to be sorted (by spec-
ifying sort=TRUE and the variable to sort on us-
ing to.sort= (not required for plotting Cook’s dis-
tances). In addition, a cut-off value can be speci-
fied using (cutoff=). Values that exceed this cut-
off value will be plotted visually differently, to facili-
tate the identification of influential cases. By default,
the results for all cases and all variables are plotted,
but a selection of these can be made by specifying
parameters= and / or groups=. Finally, by specify-
ing abs=TRUE the absolute values of the measure of
influence are plotted.
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Example: students in 23 schools

In our example, we are interested in the relationship
between the degree of structure that schools attempt
to enforce in their classrooms and students’ perfor-
mance on a math test. Could it be that a highly
structured class affects their performance?

The influence.ME package contains the school23
data.frame, that provides information on the per-
formance of 519 students in 23 schools. Measure-
ments include individual students’ score on a math
test, school-level measurements of class structure,
and several additional independent variables. Stu-
dent’s class and school are equivalent in this data,
since only one class per school is available. These
data are a subset of the NELS-88 data (National
Education Longitudinal Study of 1988). The data
are publicly available from the internet: http:
//www.ats.ucla.edu/stat/examples/imm/, and are
reproduced with kind permission of Ita Kreft and Jan
de Leeuw (1998).

First, using the lme4 package, we estimate a mul-
tivariate mixed effects model with students nested in
schools, a random intercept, a measurement of indi-
vidual students’ time spent on math homework, and
a measurement of class structure at the school level.
For the purpose of our example, we assume here that
the math, homework, and structure variables were
correctly measured at the interval level.

library(influence.ME)
data(school23)

school23 <- within(school23,
homework <- unclass(homework))

m23 <- lmer(math ~ homework + structure
+ (1 | school.ID),
data=school23)

print(m23, cor=FALSE)

This results in the summary of the model based
on 23 schools (assigned to object m23), as shown be-
low.

Linear mixed model fit by REML
Formula: math ~ homework +

structure + (1 | school.ID)
Data: school23

AIC BIC logLik deviance REMLdev
3734 3756 -1862 3728 3724

Random effects:
Groups Name Variance Std.Dev.
school.ID (Intercept) 19.543 4.4208
Residual 71.311 8.4446

Number of obs: 519, groups: school.ID, 23

Fixed effects:
Estimate Std. Error t value

(Intercept) 52.2356 5.3940 9.684
homework 2.3938 0.2771 8.640
structure -2.0950 1.3237 -1.583

Based on these estimates, we may conclude that
students spending more time on their math home-
work score better on a math test. Regarding class
structure, however, we do not find a statistically sig-
nificant association with math test scores. But, can
we now validly conclude that class structure does
not influence students’ math performance, based on
the outcomes of this model?

Visual Examination

Since the analysis in the previous section has been
based on the limited number of 23 schools, it is, of
course, possible that observations on single schools
have overly influenced these findings. Before using
the tools provided in the influence.ME package to
formally evaluate this, a visual examination of the re-
lationship between class structure and math test per-
formance, aggregated to the school level, will be per-
formed.

struct <- unique(subset(school23,
select=c(school.ID, structure)))

struct$mathAvg <- with(school23,
tapply(math, school.ID, mean))

dotplot(mathAvg ~ factor(structure),
struct,
type=c("p","a"),
xlab="Class structure level",
ylab="Average Math Test Score")
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Figure 1: Visual examination of class structure and
math performance
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In the syntax above, a bivariate plot of the ag-
gregated math scores and class structure is created,
which is shown in Figure 1. In this plot, it is clear that
one single school represented in the lower-left corner
of the graph seems to be an outlier, and - more im-
portantly - the non-linear curve shown in this graph
clearly indicates this single school with class struc-
ture level of 2 may overly influence a linear regres-
sion line estimated based on these data.

Calculating measures of influence

In the previous section, based on Figure 1 we sus-
pected that the combination in one specific school of
the low average math test results of students, and
the low level of class structure in that school, may
have overly influenced the original analysis of our
data. However, this is only a bivariate examination
of the data, and therefore does not take into account
other variables in the model. Hence, in our exam-
ple, our preliminary conclusion that this may be an
influential case is not controlled for possible effects
of the homework variable. A better test is provided
by standardized measures of influence, as calculated
from the regression model rather than from the raw
data.

The first step in detecting influential data is to de-
termine the extent to which the parameter estimates
in model m23 change, when iteratively each of the
schools is deleted from the data. This is done with
the influence function:

estex.m23 <- influence(m23, "school.ID")

The influence function takes a mixed effects re-
gression model as input (here: m23), and the group-
ing factor needs to be specified, which in our case
is school.ID. We assign the output of the influence
function to an object named estex.m23. Below, we
use this object as input to the dfbetas function, to
calculate DFBETAS.

dfbetas(estex.m23,
parameters=c(2,3))

This results in a substantial amount of output, a
portion of which is shown below. Only the DFBE-
TAS for the homework and structure variables were
returned, since parameters=c(2,3) was specified.

homework structure
6053 -0.13353732 -0.168139487
6327 -0.44770666 0.020481057
6467 0.21090081 0.015320965
7194 -0.44641247 0.036756281
7472 -0.55836772 1.254990963
...
72292 0.62278508 0.003905031
72991 0.52021424 0.021630219

The numerical output given above by the dfbetas
function provides a detailed report of the values of
DFBETAS in the model. For each variable, as well
as for each nesting group (in this example: each
school), a value for DFBETAS is computed and re-
ported upon. The cut-off value of DFBETAS equals
2/
√

n (Belsley et al., 1980), which in this case equals
2/
√

23 = .41. The estimate for class structure in this
model seems to be influenced most strongly by ob-
servations in school number 7472. The DFBETAS
for the structure variable clearly exceeds the cut-off
value of .41. Also, the estimates of the homework vari-
able changes substantially with the deletion of sev-
eral schools, as indicated by the high values of DF-
BETAS.

A plot (shown in Figure 2) of the DFBETAS is cre-
ated using:

plot(estex.m23,
which="dfbetas",
parameters=c(2,3),
xlab="DFbetaS",
ylab="School ID")

Based on Figure 2, it is clear that both the
structure and the homework variables are highly
susceptible to the influence of single schools. For
the structure variable this is not all that surpris-
ing, since class structure was measured at the school
level and shown in Figure 1 to be very likely to be
influenced by a single case: school number 7472.
The observation that high values of DFBETAS were
found for the homework variable, suggests that sub-
stantial differences between these schools exist in
terms of how much time students spend on aver-
age on their homework. Therefore, we suggest that
in mixed effects regression models, both the esti-
mates of individual-level and group-level variables
are evaluated for influential data.

The measure of Cook’s distance allows to deter-
mine the influence a single higher-level group has on
the estimates of multiple variables simultaneously.
So, since the cooks.distance function allows to spec-
ify a selection of variables on which the values for
Cook’s distance are to be calculated, this can be used
to limit the evaluation to the measurements at the
group-level exclusively. Note, that whereas DFBE-
TAS always relates to single variables, Cook’s dis-
tance is a summary measure of changes on all pa-
rameter estimates it is based on. Reports on Cook’s
distance thus should always specify on which vari-
ables these values are based.

To continue our example, we illustrate the
cooks.distance function on a single variable, since
class structure is the only variable measured at the
school-level. In the example below, we use the same
object that was returned from the influence func-
tion. The specification of this function is similar
to dfbetas, and to create a plot of the Cook’s dis-
tances we again use the plot function with the spec-
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Figure 2: DFBETAS of class structure and homework

ification which="cook". We specify two additional
arguments to augment the figure. First, we spec-
ify sort=TRUE to have the resulting Cook’s distances
sorted in a descending order in the figure. The ap-
propriate cut-off value for Cook’s distance with 23
nesting groups equals to 4/23 = .17. By specifying
the cut-off value with cutoff=.17, Cook’s distances
exceeding the specified value are easily identified in
the resulting figure. Thus, to receive both numeric
output and a graphical representation (Figure 3), the
following specification of cooks.distance and plot
is given:

cooks.distance(estex.m23,
parameter=3, sort=TRUE)

plot(estex.m23, which="cook",
cutoff=.17, sort=TRUE,
xlab="Cook´s Distance",
ylab="School ID")

The output below shows one value of Cook’s dis-
tance for each nesting group, in this case for each
school.

[,1]
24371 6.825871e-06
72292 1.524927e-05
...
54344 2.256612e-01
7829 3.081222e-01
7472 1.575002e+00
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Figure 3: Cook’s Distance based on class structure

Only a selection of the output is shown here. A
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few schools exceed the cut-off value (in Figure 3
these are indicated with red triangles), but one school
stands out: 7472. Clearly, this school strongly in-
fluences the outcomes regarding the structure vari-
able, as we already suspected based on our bivariate
visual examination in Figure 1.

Testing for Changes in Statistical Signifi-
cance (sigtest)

In the example below, the sigtest function is used to
test for changing levels of significance after deletion
of each of the 23 schools from our example model.
We are specifically interested in the level of signif-
icance of the structure variable, for which it was
already established above that school with number
7472 is very influential. Since we observed a negative
effect in the original model, we specify test=-1.96 to
test for significance at a commonly used value (-1.96)
of the test statistic. Note that since we estimated a
normally distributed model, the test statistic here is
the t-value.

sigtest(estex.m23, test=-1.96)$structure[1:10,]

In the example above, we only request the results
for the structure variable and for the first 10 schools.
In the results presented below, three columns are
shown. The first column (Altered.Teststat) shows
the value of the test statistic (here for the structure
variable) after the deletion of the respective schools
(indicated in the row labels). Especially school num-
ber 7472 stands out. In the original model, the test
statistic for the structure variable was -1.583, which
was not significant. When the influence of school
number 7472 is excluded from the model, the test
statistic now is -2.72, which exceeds the selected
value of -1.96 selected by us. That the structure vari-
able would be significant by deletion of school 7472
is indicated in the second column (Altered.Sig). The
Changed.Sig column finally confirms whether the
level of significance of the structure variable (which
was not significant in the original model) changed to
significant after each of the schools was deleted.

In the case of our example, the results for Cook’s
Distance and the results of this test for changing lev-
els of significance both indicate that school number
7472 overly influences the regression outcomes re-
garding the school-level structure variable. Refer-
ring to the discussion on influential data above, how-
ever, we emphasize that this is not necessarily always
the case. Cases can influence the point estimates
without affecting their level of significance, or affect
the level of significance without overly affecting the
point estimate itself. Therefore, both tests should be
performed.

Altered.Teststat Altered.Sig Changed.Sig
6053 -1.326409 FALSE FALSE
6327 -1.688663 FALSE FALSE
6467 -1.589960 FALSE FALSE
7194 -1.512686 FALSE FALSE
7472 -2.715805 TRUE TRUE
7474 -1.895138 FALSE FALSE
7801 -1.534023 FALSE FALSE
7829 -1.045866 FALSE FALSE
7930 -1.566117 FALSE FALSE
24371 -1.546838 FALSE FALSE

Before, using DFBETAS, we identified several
schools that overly influence the estimate of the
homework variable. We have there performed
sigtest test to evaluate whether deletion of any of
the schools changes the level of significance of the
homework variable. These results are not shown here,
but indicated that the deletion of none of the schools
changed the level of significance of the homework
variable.

Measuring the influence of lower-level ob-
servations

Finally, it is possible that a single lower-level obser-
vation affects the results of the mixed effects model,
especially for data with a limited number of lower-
level observations per group. In our example, this
would refer to a single student affecting the estimates
of either the individual-level variables, the school-
level variables, or both. Here, we test whether one
or more individual students affect the estimate of the
school-level structure variable.

To perform this test, the influence function is
used, and obs=TRUE is specified to indicate that sin-
gle observations (rather than groups) should be eval-
uated. The user is warned that this procedure often
will be computationally intensive when the number
of lower-level observations is large.

Next, we request Cook’s Distances specifically for
the structure variable. Since the number of student-
level observations in this model is 519, and cut-off
value for Cook’s Distance is defined as 4/n, the cut-
off value is 4/519 = .0077. The resulting output is
extensive, since a Cook’s Distance is calculated for
any of the 519 students. Therefore, in the example
below, we directly test which of the resulting Cook’s
Distances exceeds the cut-off value.

estex.obs <- influence(m23, obs=TRUE)
cks.d <- cooks.distance(estex.obs, parameter=3)
which(cks.d > 4/519)

The output is not shown here, but the reader can
verify that students with numbers 88 and 89 exert too
much influence on the estimate of the structure vari-
able. Using the sigtest function, however, showed
that the deletion of none of the students from the
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data affected the level of significance of the struc-
ture variable, nor of any of the other variables in the
model.

Dealing with Influential Data

Now that overly influential cases have been identi-
fied in our model, we have to decide how to deal
with them. Generally, there are several strategies,
including getting more data, checking data consis-
tency, adapting model specification, deleting the in-
fluential cases from the model, and obtaining addi-
tional measurements on existing cases to account for
the overly influential cases (Van der Meer et al., 2010;
Harrell, Jr., 2001).

Since overly influential data are a problem es-
pecially encountered in models based on a limited
number of cases, a straightforward remedy would
be to observe more cases in the population of inter-
est. In our example, if we would be able to sample
more schools, it may very well turn out that we ob-
serve several additional schools with a low score on
the structure variable, so that school number 7472 is
no longer influential. Secondly, there may have been
measurement, coding, or transcription errors in the
data, that have lead to extreme scores on one or more
of the variables (i.e. it may be worthwhile, if possible,
to check whether class structure and / or students’
math performance in school 7472 really is that low).
Thirdly, the model specification may be improved. If
the data are used to estimate too complex models, or
if parameterization is incorrect, influential cases are
more likely to occur. Perhaps the structure variable
should have been treated as categorical.

These are all general strategies, but cannot always
be applied. Depending on the research setting, it is
not always feasible to obtain more observations, to
return to the raw data to check consistency, or to re-
duce model complexity or change parameterization.

The fourth strategy, deleting influential cases
from the model, can often be applied. In general,
we suggest deleting influential cases one at the time
and then to re-evaluating the model. Deleting one or
more influential cases from a mixed effects model is
done with the exclude.influence function. The in-
put of this function is a mixed effects model object,
and it returns an updated mixed effects model from
which a specified group was deleted. To illustrate,
we delete school number 7472 (which was identified
as being overly influential) and its individual-level
observations, using the example code below:

m22 <- exclude.influence(m23,
"school.ID", "7472")

print(m22, cor=FALSE)

The exclude.influence function takes a mixed
effects model as input, and requires the specification
of the grouping factor (school.ID) and the group to
be deleted (7472). It returns a re-estimated mixed
effects model, that we assign to the object m22. The
summary of that model is shown below:

Linear mixed model fit by REML
Formula: math ~ homework + structure

+ (1 | school.ID)
Data: ..1
AIC BIC logLik deviance REMLdev

3560 3581 -1775 3554 3550
Random effects:
Groups Name Variance Std.Dev.
school.ID (Intercept) 15.333 3.9157
Residual 70.672 8.4067

Number of obs: 496, groups: school.ID, 22

Fixed effects:
Estimate Std. Error t value

(Intercept) 59.4146 5.9547 9.978
homework 2.5499 0.2796 9.121
structure -3.8949 1.4342 -2.716

Two things stand out when this model summary
is compared to our original analysis. First, the num-
ber of observations is lower (496 versus 519), as well
as the number of groups (22 versus 23). More impor-
tantly, though, the negative effect of the structure
variable now is statistically significant, whereas it
was not in the original model. So, now these model
outcomes indicate that higher levels of class structure
indeed are associated with lower math test scores,
even when controlled for the students’ homework
efforts.

Further analyses should repeat the analysis for
influential data, for other schools may turn out to be
overly influential as well. These repetitive steps are
not presented here, but as it turned out, three other
schools were overly influential. However, the sub-
stantive conclusions drawn based on model m22 did
not change after their deletion.

Finally, we suggest an approach for dealing with
influential data, based on Lieberman (2005). He ar-
gues that the presence of outliers may indicate that
one or more important variables were omitted from
the model. Adding additional variables to the model
may then account for the outliers, and improve the
model fit. We discussed above that an influential case
is not necessarily an outlier in a regression model.
Nevertheless, if additional variables in the model
can account for the fact that an observation has ex-
treme scores on one or more variables, the case may
no longer be an influential one.

Thus, adding important variables to the model
may solve the problem of influential data. When the
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observations in a regression model are, for instance,
randomly sampled respondents in a large-scale sur-
vey, it often is impossible to return to these respon-
dents for additional measurements. However, in so-
cial science applications of mixed effects models, the
higher-level groups are often readily accessible cases
such as schools and countries. It may very well be
possible to obtain additional measurements on these
schools or countries, and use these to remedy the
presence of influential data.

Summary

influence.ME provides tools for detecting influen-
tial data in mixed effects models. The application of
these models has become common practice, but the
development of diagnostic tools lag behind. influ-
ence.ME calculates standardized measures of influ-
ential data such as DFBETAS and Cook’s distance,
as well as percentile change and a test for chang-
ing in statistical significance of fixed parameter esti-
mates. The package and measures of influential data
were introduced, a practical example was given, and
strategies for dealing with influential data were sug-
gested.
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The crs Package: Nonparametric
Regression Splines for Continuous and
Categorical Predictors
by Zhenghua Nie and Jeffrey S Racine

Abstract A new package crs is introduced for
computing nonparametric regression (and quan-
tile) splines in the presence of both continuous
and categorical predictors. B-splines are em-
ployed in the regression model for the contin-
uous predictors and kernel weighting is em-
ployed for the categorical predictors. We also de-
velop a simple R interface to NOMAD, which is
a mixed integer optimization solver used to com-
pute optimal regression spline solutions.

Introduction

Regression splines constitute a popular approach for
the nonparametric estimation of regression functions
though they are restricted to continuous predictors
as are smoothing splines (see e.g. smooth.spline
which is limited to one numeric predictor) and
locally weighted scatterplot smoothing (see loess
which is limited to four numeric predictors). How-
ever, it is not uncommon to encounter relationships
involving a mix of numeric and categorical predic-
tors, and the crs package implements a regression
spline framework for accomplishing this task.

The crs package implements the approaches de-
scribed in Ma et al. (2012) and Ma and Racine (2012)
when the option kernel=TRUE is selected (default)
as described below. The categorical predictors can
be handled in two ways, (i) using kernel weighting
where the kernel functions are tailored to the dis-
crete support of the categorical predictors (Racine
and Li, 2004), and (ii) using indicator basis func-
tions. The fundamental difference between these two
approaches is that the use of indicator basis func-
tions consumes degrees of freedom via the number
of columns in the basis matrix, while kernel weight-
ing does not. As well, this package implements a
range of related methods and provides options that
we hope will make it appealing for applied projects,
research, and pedagogical purposes alike.

Both semiparametric additive models and
fully nonparametric models are implemented.
Data-driven methods can be used for selecting
the spline degree, number of segments/knots,
and bandwidths: leave-one-out cross-validation
(cv.func = "cv.ls") (Stone, 1974, 1977), general-
ized cross-validation (cv.func="cv.gcv") (Craven
and Wahba, 1979), and the information-based crite-
rion (cv.func="cv.aic") proposed by Hurvich et al.

(1998). Derivatives of arbitrary order can readily be
constructed. One of the computational challenges
encountered is to obtain the optimal spline degree
(non-negative integer), number of segments/knots
(positive integer), and bandwidth (bounded and
real-valued) for each predictor. We overcome this
challenge by providing an interface to NOMAD
(Abramson et al., 2011; Le Digabel, 2011).

Before proceeding we briefly provide an
overview of some important implementation details:

1. The degree of the spline and number of seg-
ments (i.e. knots minus one) for each contin-
uous predictor can be set manually as can the
bandwidths for each categorical predictor (if
appropriate).

2. Alternatively, any of the data-driven criteria
(i.e. cv.func="...") could be used to select ei-
ther the degree of the spline (holding the num-
ber of segments/knots fixed at any user-set
value) and bandwidths for the categorical pre-
dictors (if appropriate), or the number of seg-
ments (holding the degree of the spline fixed at
any user-set value) and bandwidths for the cat-
egorical predictors (if appropriate), or the num-
ber of segments and the degree of the spline for
each continuous predictor and bandwidths for
each categorical predictor (if appropriate).

3. When indicator basis functions are used in-
stead of kernel smoothing, whether to in-
clude each categorical predictor or not can be
specified manually or chosen via any cv.func
method.

4. We allow the degree of the spline for each con-
tinuous predictor to include zero, the inclu-
sion indicator for each categorical predictor to
equal zero, and the bandwidth for each cate-
gorical predictor to equal one, and when the
degree/inclusion indicator is zero or the band-
width is one, the variable is thereby removed
from the regression: in this manner, irrele-
vant predictors can be automatically removed
by any cv.func method negating the need for
pre-testing (mirroring findings detailed in Hall
et al. (2004, 2007) for kernel regression).

The design philosophy underlying the crs pack-
age aims to closely mimic the behaviour of the lm
function. Indeed, the implementation relies on lm
and its supporting functions for computation of the

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=crs


CONTRIBUTED RESEARCH ARTICLES 49

spline coefficients, delete-one residuals, fitted values,
prediction and the like. 95% confidence bounds for
the fit and derivatives are constructed from asymp-
totic formulae and automatically generated. Below
we describe in more detail the specifics of the im-
plementation for the interested reader. Others may
wish to jump to the illustrative example that appears
towards the end of this article or simply install and
load the package and run example(crs).

Differences between existing spline meth-
ods and those in the crs package

Readers familiar with existing R-functions and pack-
ages for spline modelling will naturally be wonder-
ing what the difference is between the crs package
and existing spline-based procedures such as

• smooth.spline in R base

• spm in the SemiPar package (Wand, 2010)

• gam in the mgcv package (Wood, 2006)

• ssanova in the gss package (Gu, 2012)

• gam in the gam package (Hastie, 2011)

First we note that the functions smooth.spline
and ssanova are based on smoothing spline method-
ology, while spm uses penalized splines but gam in the
gam/mgcv packages allows for smoothing splines,
penalized splines, and regression splines. The crs
package is restricted to ‘regression splines’ which
differs in a number of ways from ‘smoothing splines’
and ‘penalized splines’, the fundamental difference
being that smoothing/penalized splines use the data
points themselves as potential knots and penalize
‘roughness’ (typically the second derivative of the
estimate) while regression splines place knots at
equidistant/equiquantile points and do not explic-
itly penalize roughness, rather, they rely on vari-
ous cross-validatory approaches for model selection.
We direct the interested reader to Wahba (1990) for
a treatment of smoothing splines. The crs package
is one of the few packages devoted to regression
spline techniques. We also provide quantile regres-
sion splines via the option tau=τ (τ ∈ (0,1)).

Second, many of the aforementioned smoothing
spline implementations are semiparametric in na-
ture, the semiparametric additive model being par-
ticularly popular. Though semiparametric mod-
els exist to circumvent the curse of dimensionality,
it does not come without cost. That is, the bur-
den of determining whether semiparametric or non-
parametric approaches would be warranted in any
given situation is placed squarely on the researcher’s
shoulder. Unlike many existing spline methods in
R, the implementation in the crs package is de-
signed so that every parameter that must be cho-
sen by the researcher can be data-driven (via cross-
validation) so that such choices adapt to the data

at hand including whether to use a semiparamet-
ric or nonparametric model. This is accomplished
using options such as basis="auto", knots="auto",
and complexity="degree-knots" (basis="auto" de-
ciding whether to use an additive basis or tensor
product basis in multivariate settings, knots="auto"
whether to use equispaced knots or quantile knots,
and complexity="degree-knots" determining both
the spline degrees and number of knots).

Generally speaking, almost all of these exist-
ing smoothing spline approaches can handle mixed
datatypes though their approaches to the treatment
of categorical variables often differ (none use cate-
gorical kernel smoothing as in the crs package).

The underlying model

Regression spline methods can be limited in their po-
tential applicability as they are based on continuous
predictors. However, in applied settings we often
encounter categorical predictors such as strength of
preference (“strongly prefer”, “weakly prefer”, “in-
different”) and so forth.

We wish to model the unknown conditional mean
in the following location-scale model,

Y = g (X,Z) + σ (X,Z) ε,

where g(·) is an unknown function, X =
(
X1, . . . , Xq

)T

is a q-dimensional vector of continuous predictors,
Z = (Z1, . . . , Zr)

T is an r-dimensional vector of cat-
egorical predictors, and σ2 (X,Z) is the conditional
variance of Y given X and Z. Letting z = (zs)

r
s=1,

we assume that zs takes cs different values in
Ds ≡ {0,1, . . . , cs − 1}, s = 1, . . . ,r, and cs is a finite
positive constant.

For the continuous predictors the regression
spline model employs the B-spline routines in the
GNU Scientific Library (Galassi et al., 2009). The
B-spline function is the maximally differentiable in-
terpolative basis function (B-spline stands for ‘basis-
spline’).

Heuristically, we conduct linear (in parameter)
regression using the R function lm, however, we re-
place the continuous predictors with B-splines of po-
tentially differing order and number of segments
for each continuous predictor. For the tensor prod-
uct bases we set intercept=TRUE for each univariate
spline basis, while for the additive spline bases we
adopt the intercept=FALSE variants and include an
intercept term in the model (the B-splines will there-
fore not sum to one, i.e. an order m B-spline with one
segment (two knots/breakpoints) has m+ 1 columns
and we drop the first as is often done, though see
Zhou and Wolfe (2000) for an alternative approach
based upon shrinkage methods). This allows multi-
ple bases to coexist when there is more than one con-
tinuous predictor. The tensor product basis is given
by

B1 ⊗ B2 ⊗ · · · ⊗ Bp,
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where ⊗ is the Kronecker product where the prod-
ucts operate column-wise and Bj is the basis matrix
for predictor j as outlined above. We also support
a ‘generalized’ polynomial B-spline basis that con-
sists of a varying-order polynomial with appropriate
interactions. When additive B-spline bases are em-
ployed we have a semiparametric ‘additive’ spline
model (no interaction among variables unless explic-
itly specified). When the tensor product or general-
ized polynomial is employed we have a fully non-
parametric model (interaction among all variables).
Whether to use the additive, tensor product, or gen-
eralized polynomial bases can be pre-specified or au-
tomatically determined via any cv.func method (see
the options for basis= in ?crs).

We offer the default option to use categorical
kernel weighting (lm(...,weights=L)) to handle the
presence of categorical predictors (see below for a de-
scription of L). We also offer the option of using indi-
cator basis functions for the categorical predictors.

Weighted least-squares estimation of the
underlying model

The unknown function g (X,Z) can be approximated
by B (X)T β (Z), where β (Z) is a vector of coefficients
and B (X) the B-spline basis matrix described above.

We estimate β (z) by minimizing the following
weighted least squares criterion,

β̂ (z) = argmin
β(z)∈RKn

n

∑
i=1

{
Yi −B (Xi)

T β (z)
}2

L (Zi,z,λ) .

Placement of knots

The user can determine where knots are to be placed
using one of two methods:

1. knots can be placed at equally spaced quantiles
whereby an equal number of observations lie
in each segment (‘quantile knots’).

2. knots can be placed at equally spaced intervals
(‘uniform knots’).

If preferred, this can be determined automatically us-
ing the option knots="auto".

Kernel weighting

Let Zi be an r-dimensional vector of categori-
cal/discrete predictors. We use zs to denote the s-th
component of z, we assume that zs takes cs different
values in Ds ≡ {0,1, . . . , cs − 1}, s = 1, . . . ,r, and let
cs ≥ 2 be a finite positive constant.

For an unordered categorical predictor, we use a
variant of the kernel function outlined in Aitchison
and Aitken (1976) defined as

l(Zis,zs,λs) =

{
1, when Zis = zs,
λs, otherwise. (1)

Let 1(A) denote the usual indicator function, which
assumes the value one if A holds true, zero other-
wise. Using (1), we can construct a product kernel
weight function given by

L (Zi,z,λ) =
r

∏
s=1

l(Zis,zs,λs) =
r

∏
s=1

λ
1(Zis 6=zs)
s ,

while for an ordered categorical we use the function
defined by

l̃(Zis,zs,λs) = λ
|Zis−zs |
s

and modify the product kernel function appropri-
ately. When Z contains a mix of ordered and un-
ordered variables we select the appropriate kernel
for each variable’s type when constructing the prod-
uct kernel L (Zi,z,λ).

Note that when λs = 1 all observations are
‘pooled’ over categorical predictor s hence the vari-
able zs is removed from the resulting estimate, while
when λs = 0 only observations lying in a given cell
are used to form the estimate.

Additional estimation details

Estimating the model requires construction of the
spline bases and their tensor product (if specified)
along with the categorical kernel weighting func-
tion. Then, for a given degree and number of seg-
ments for each continuous predictor and bandwidth
for each categorical predictor (or indicator bases if
kernel=FALSE), the model is fit via least-squares.

All smoothing parameters can be set manually
by the user if so desired, however be forewarned
that you must use the option cv="none" otherwise
the values specified manually will become the start-
ing points for search when cv="nomad" (‘nonsmooth
mesh adaptive direct search (NOMAD)’, see Abram-
son et al. (2011) and Le Digabel (2011)). Currently, we
provide a simple R interface to NOMAD (see the sec-
tion below) in the crs package which also can be ap-
plied to solve other mixed integer optimization prob-
lems.

The degree, segment, and bandwidth vectors can
be jointly determined via any cv.func method by
setting the option cv="nomad" or cv="exhaustive"
(exhaustive search). Here we have to solve nonlin-
ear non-convex and non-differentiable mixed integer
constrained optimization problems to obtain the op-
timal degree, number of segments, and bandwidth
for each predictor.

Setting the option cv="nomad" (default) computes
NOMAD-based cross-validation directed search
while setting cv="exhaustive" computes exhaus-
tive cross-validation directed search for each unique
combination of the degree and segment vector for
each continuous predictor from degree=degree.min
through degree=degree.max (default 0 and 10,
respectively) and from segments=segments.min
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through segments=segments.max (default 1 and 10,
respectively).

When kernel=TRUE (default) setting the option
cv="exhaustive" computes bandwidths (∈ [0,1]) ob-
tained via numerical minimization (using optim) for
each unique combination of the degree and segment
vectors (restarting can be conducted via restarts=).
When setting cv="nomad" the number of multiple
starts can be controlled by nmulti= (default is 5). The
model possessing the lowest criterion function value
over the nmulti restarts is then selected as the final
model.

Note that cv="exhaustive" is often unfeasible
(this combinatoric problem can become impossibly
large to compute in finite time) hence cv="nomad" is
the default. However, with cv="nomad" one should
set nmulti= to some sensible value greater than zero
to avoid becoming trapped in local minima (default
nmulti=5).

Data-driven smoothing parameter criteria

We incorporate three popular approaches for setting
the smoothing parameters of the regression spline
model, namely least-squares cross-validation, gen-
eralized cross-validation, and an AIC method cor-
rected for use in nonparametric settings.

Let the fitted value from the regression spline
model be denoted Ŷi = Bm(Xi)

T β̂(Zi). Letting ε̂i =
Yi − Ŷi denote the ith residual from the categori-
cal regression spline model, the least-squares cross-
validation function is given by

CV =
1
n

n

∑
i=1

ε̂2
i

(1− hii)2

and this computation can be done with effectively
one pass through the data set, where hii denotes
the ith diagonal element of the spline basis projec-
tion matrix (see below for details). Since hii is com-
puted routinely for robust diagnostics in R, this can
be computed along with (and hence as cheaply as)
the vector of spline coefficients themselves. Thus
least-squares cross-validation is computationally ap-
pealing, particularly for large data sets.

Let H denote the n×n weighting matrix such that
Ŷ = HY with its ith diagonal element given by Hii
where tr(H) means the trace of H which is equal to
∑n

i=1 hii. The matrix H is often called the ‘hat matrix’
or ‘smoother matrix’ and depends on X but not on
Y. The ‘generalized’ cross-validation function is ob-
tained by replacing hii in the above formula with its
average value denoted tr(H)/n (Craven and Wahba,
1979).

The information-based criterion proposed by
Hurvich et al. (1998) is given by

AICc = ln(σ̂2) +
1 + tr(H)/n

1− {tr(H) + 2}/n

where

σ̂2 =
1
n

n

∑
i=1

ε̂2
i = Y′(I − H)′(I − H)Y/n.

Each of these criterion functions can be minimized
with respect to the unknown smoothing parameters
either by numerical optimization procedures or by
exhaustive search.

Though each of the above criteria are asymptoti-
cally equivalent in terms of the bandwidths they de-
liver (tr(H)/n → 0 as n → ∞), they may differ in
finite-sample settings for a small smoothing parame-
ter (large tr(H)/n) with the AICc criterion penalizing
more heavily when undersmoothing than either the
least-squares cross-validation or generalized cross-
validation criteria (the AICc criterion effectively ap-
plies an infinite penalty for tr(H)/n ≥ 1/2).

Pruning

Once a model has been selected via cross-validation
(i.e. degree, segments, include or lambda have
been selected), there is the opportunity to (poten-
tially) further refine the model by adding the option
prune=TRUE to the crs function call. Pruning is ac-
complished by conducting stepwise cross-validated
variable selection using a modified version of the
stepAIC function in the R MASS package where the
function extractAIC is replaced with the function
extractCV with additional modifications where nec-
essary. Pruning of potentially superfluous bases is
undertaken, however, the pruned model (potentially
containing a subset of the bases) is returned only if
its cross-validation score improves upon the model being
pruned. When this is not the case a warning is is-
sued to this effect. A final pruning stage is com-
monplace in spline frameworks and may positively
impact on the finite-sample efficiency of the result-
ing estimator depending on the rank of the model
being pruned. Note that this option can only be ap-
plied when kernel=FALSE (or when there exist only
numeric predictors).

A simple R interface to NOMAD

The crs package has included a simple R interface
to the NOMAD optimization solver called snomadr.
snomadr implements the NOMAD library which is
an open source C++ implementation of the Mesh
Adaptive Direct Search (MADS) algorithm designed
for constrained optimization of blackbox functions
(Abramson et al., 2011; Le Digabel, 2011). snomadr
can be seen as a standalone interface to this opti-
mization solver, though we would like to point out
that the authors of NOMAD are currently working on an
R package for NOMAD that we expect to be much
more comprehensive than the simple interface pro-
vided here. The principle behind developing our in-
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terface is simply to shield the user from setting up the
optimization model underlying our regression spline
implementation. For what follows we will not dis-
cuss the performance of the solver NOMAD, rather
we direct the interested reader to Abramson et al.
(2011); Le Digabel (2011) and the references therein.

The structure of the snomadr interface is simi-
lar to the interface in the R package ipoptr (http:
//www.ucl.ac.uk/~uctpjyy/ipoptr.html) which ex-
ports the R interface to the optimization solver
IPOPT (Wächter and Biegler, 2006). The interface
is split into two major portions, one is the R code
called ‘snomadr.R’ and another is a C++ program
called ‘snomadr.cpp’. The role of ‘snomadr.R’ is to set
up the optimization model, define options and then
call the C++ code to solve the optimization problem.
‘snomadr.cpp’ will receive arguments from the R code
and then call the NOMAD library functions to solve
the problem and return results to ‘snomadr.R’. .Call
is used to transfer arguments and results between
the R and C++ languages. For further details see
?snomadr.

Illustrative example

By way of illustration we consider a simple simu-
lated example involving one continuous and one cat-
egorical predictor.

set.seed(42)
n <- 1000
x <- runif(n)
z <- rbinom(n, 1, .5)
y <- cos(2 * pi * x) + z + rnorm(n, sd=0.25)
z <- factor(z)
model <- crs(y ~ x + z)
summary(model)

Call:
crs.formula(formula = y ~ x + z)

Kernel Weighting/B-spline Bases Regression
Spline

There is 1 continuous predictor
There is 1 categorical predictor
Spline degree/number of segments for x: 3/4
Bandwidth for z: 0.0008551836
Model complexity proxy: degree-knots
Knot type: quantiles
Training observations: 1000
Trace of smoother matrix: 14
Residual standard error: 0.2453 on 993

degrees of freedom
Multiple R-squared: 0.927,

Adjusted R-squared: 0.9265
F-statistic: 962.9 on 13 and 986 DF,

p-value: 0
Cross-validation score: 0.061491531
Number of multistarts: 5

The function crs() called in this example re-
turns a "crs" object. The generic functions fitted
and residuals extract (or generate) estimated values
and residuals. Furthermore, the functions summary,
predict, and plot (options mean=FALSE, deriv=i,
ci=FALSE, plot.behavior = c("plot", "plot-data",
"data"), where i is a positive integer) support objects
of this type.

Figure 1 presents summary output in the form
of partial regression surfaces (predictors not appear-
ing on the axes are held constant at their medi-
ans/modes). Note that for this simple example
we used the option plot(model,mean=TRUE) which
presents ‘partial regression plots’.1
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Figure 1: The partial regression plot for one categor-
ical and one continuous predictor.

Next we plot the first partial derivative (which
plots the partial derivative with respect to the con-
tinuous predictor holding the categorical predictor
at its modal value and next the difference between
the regression function when the categorical predic-
tor equals 0 and 1 holding the continuous predictor

1A ‘partial regression plot’ is simply a 2D plot of the outcome y versus one predictor xj when all other predictors are held constant at
their respective medians/modes (this can be changed by the user).
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at its median) for this model in Figure 2. Note that
here we used the option plot(model,deriv=1).
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Figure 2: The partial gradient plot for one categorical
and one continuous predictor.

Comparison with existing spline
methods

We now compare and contrast some existing spline
implementations in R with the regression spline im-
plementation contained in the crs package via two
illustrative Monte Carlo simulations.

The bivariate one continuous predictor
case

We first consider the simple and popular case of non-
parametrically modeling the relationship between a
response Y and univariate predictor X. Here the pur-
pose is to help the reader assess the performance
of regression splines versus smoothing splines. We
consider four data generating processes (DGPs), the
sine and cosine functions, the absolute value func-
tion, and the Doppler function given by

g(x) =
√

x(1− x)× sin

(
2π(1 + 2−7/5)

x + 2−7/5

)

For the sine, cosine, and Doppler functions X is
U[0,1], while for the absolute value function X is
U[−1,1]. We vary the signal/noise ratio by standard-
izing the DGP to have mean zero and unit variance
and setting σ for the Gaussian noise to 1/4,1/2,1,2
which produces expected in-sample fits of R2 =
0.95,0.80,0.50,0.20 for the oracle estimator (i.e. one
that uses knowledge of the DGP).

We compare crs-based regression splines with
smoothing spline methods gam in the mgcv package,
spm in the SemiPar package, ssanova in the gss pack-
age, and loess in base R. All methods in this first
simulation use default settings.

We draw M = 1,000 replications of size n = 1,000
from each DGP, compute the mean square error
(MSE) for each model, and report the median value
of each model’s MSE relative to that for crs over the
M = 1,000 replications in Table 1 below (numbers
less than one indicate that a method is more efficient
than crs).

Table 1: MSE efficiency of the various methods rela-
tive to crs (numbers less than one indicate more effi-
cient than crs).

sin(2πx) gam spm ssanova loess

σ = 0.25 0.97 1.24 1.02 8.06
σ = 0.50 0.80 0.89 0.81 2.15
σ = 1.00 0.78 0.78 0.78 0.92
σ = 2.00 0.84 0.79 0.83 0.71

sin(4πx) gam spm ssanova loess

σ = 0.25 0.89 1.43 1.11 507.85
σ = 0.50 0.78 1.15 0.98 129.41
σ = 1.00 0.81 1.01 0.95 36.72
σ = 2.00 0.77 0.84 0.85 9.89

cos(2πx) gam spm ssanova loess

σ = 0.25 1.13 1.17 1.17 39.39
σ = 0.50 0.99 1.00 1.04 11.18
σ = 1.00 0.98 0.93 1.00 3.67
σ = 2.00 0.89 0.82 0.91 1.38

cos(4πx) gam spm ssanova loess

σ = 0.25 2.78 1.54 1.30 299.88
σ = 0.50 1.31 1.25 1.12 79.85
σ = 1.00 0.93 1.02 0.97 21.42
σ = 2.00 0.82 0.89 0.87 6.09

abs(x) gam spm ssanova loess

σ = 0.25 1.55 0.91 0.98 14.59
σ = 0.50 1.20 1.05 1.11 5.97
σ = 1.00 1.23 1.18 1.26 2.73
σ = 2.00 1.41 1.36 1.43 1.61

doppler(x) gam spm ssanova loess

σ = 0.25 65.45 1.67 1.68 359.63
σ = 0.50 18.53 1.39 1.42 99.51
σ = 1.00 5.15 1.14 1.19 25.40
σ = 2.00 1.78 1.03 1.04 6.81
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Table 1 reveals some general patterns. For
smooth low frequency DGPs such as the sine and
cosine, gam, spm, and ssanova turn in similar perfor-
mances depending on the signal/noise ratio. How-
ever, loess does not do well with these DGPs. For
the absolute value and Doppler DGPs gam, spm,
ssanova and loess on balance perform worse than
crs. From a minimax perspective, the regression
spline implementation in the crs package performs
relatively well overall. Naturally by modifying tun-
ing parameters one could expect to improve the
performance of the smoothing spline methods (this
would apply to crs as well as default settings are
used throughout). The point to be made is simply
that the regression spline implementation in crs ap-
pears to adapt fairly well to the underlying DGP and
may therefore be of interest to readers.

The multivariate case, mixed predictor
types

Next we consider mixed predictor multivariate
DGPs with additive and multiplicative features. The
additive DGP is of the form

x1 <- runif(n)
x2 <- runif(n)
z <- rbinom(n, 1, .5)
dgp <- cos(2*pi*x1) + sin(2*pi*x2) + z
dgp <- (dgp - mean(dgp))/sd(dgp)
y <- dgp + rnorm(n, sd=sigma)
z <- factor(z)

while the multiplicative DGPs are of the form

x1 <- runif(n)
x2 <- runif(n)
z <- rbinom(n, 1, .5)
dgp <- cos(2*pi*x1) * sin(2*pi*x2) * z
dgp <- (dgp - mean(dgp))/sd(dgp)
y <- dgp + rnorm(n, sd=sigma)
z <- factor(z)

and the radial function given by

x1 <- runif(n, -5, 5)
x2 <- runif(n, -5, 5)
z <- rbinom(n, 1, .5)
dgp <- sin(sqrt(x1^2 + x2^2 + z))/

sqrt(x1^2 + x2^2 + z)
dgp <- (dgp - mean(dgp))/sd(dgp)
y <- dgp + rnorm(n, sd=sigma)
z <- factor(z)

We again vary the signal/noise ratio by standardiz-
ing the DGP and setting σ for the Gaussian noise to
1/4,1/2,1,2 which produces expected in-sample fits
of R2 = 0.95,0.80,0.50,0.20 for the oracle estimator
(i.e. one that uses knowledge of the DGP). We esti-
mate the following eight models,

model <- crs(y ~ x1 + x2 + z)
# gam (mgcv) additive
model <- gam(y ~ s(x1) + s(x2) + z)
# gam (mgcv) tensor to admit interactions
model <- gam(y ~ t2(x1, x2, k=k) + z)
# gam (mgcv) tensor with smooth for every z
model <- gam(y ~ t2(x1, x2, k=k, by=z) + z)
# spm (SemiPar) additive
model <- spm(y ~ f(x1) + f(x2) + z)
# spm (SemiPar) tensor product
model <- spm(y ~ f(x1, x2) + z)
# ssanova (gss) additive
model <- ssanova(y ~ x1 + x2 + z)
# ssanova (gss) tensor product
model <- ssanova(y ~ x1 * x2 + z)

We draw M = 1000 replications of size n = 1000 from
each DGP, compute the MSE for each model, and re-
port the median value of each model’s MSE relative
to that for crs over the M replications in Table 2 be-
low.
Table 2: MSE efficiency of the various methods rela-
tive to crs (numbers less than one indicate more effi-
cient than crs).

Additive DGP (cos(2πx1) + sin(2πx2) + z)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 0.60 1.57 2.11 0.64 1.71 0.62 0.70
0.50 0.57 0.94 1.56 0.57 1.24 0.57 0.65
1.00 0.55 0.83 1.44 0.51 0.95 0.54 0.65
2.00 0.52 0.75 1.35 0.49 0.72 0.51 0.60

Additive DGP (cos(4πx1) + sin(4πx2) + z))
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 0.72 1.07 1.88 0.77 5.76 0.65 0.72
0.50 0.54 0.94 1.70 0.63 2.50 0.58 0.65
1.00 0.52 0.90 1.65 0.57 1.53 0.57 0.62
2.00 0.53 0.90 1.64 0.56 1.17 0.55 0.63

Multiplicative DGP (cos(2πx1)× sin(2πx2)× z)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 228.82 111.54 0.78 229.05 111.41 229.17 112.97
0.50 95.18 46.93 1.09 95.26 46.81 95.31 47.46
1.00 30.23 15.50 1.16 30.25 15.55 30.25 15.60
2.00 9.61 5.39 1.14 9.60 5.49 9.59 5.32

Multiplicative DGP (cos(4πx1)× sin(4πx2)× z)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 93.39 44.36 0.62 93.52 51.31 93.58 54.14
0.50 30.05 14.66 0.64 30.09 16.85 30.11 17.71
1.00 9.92 5.28 0.74 9.93 5.92 9.94 6.56
2.00 3.40 2.26 0.86 3.39 2.50 3.39 3.37

Multiplicative DGP (radial)
gam spm ssanova

σ (add) (int) (by) (add) (te) (add) (te)

0.25 89.66 2.18 1.16 89.07 2.29 89.60 2.21
0.50 31.35 1.27 1.30 31.18 1.29 31.35 1.21
1.00 12.65 1.19 1.72 12.56 1.09 12.68 1.08
2.00 4.49 1.10 1.82 4.44 0.88 4.51 0.99

For the mgcv routine gam, a referee noted that
?choose.k could be consulted where it suggests us-
ing gam.check() to help guide the appropriate num-
ber of knots and suggested non-stochastic values of
k=5 for the additive DGP with 2π and k=10 for the
remaining DGPs (these values were used in Table 2
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for gam via the argument k=k rather than the default
values, while crs uses stochastic values for the basis
and all smoothing parameters).

When the DGP is additive, it is clear that the
smoothing splines that presume additivity are more
efficient than crs for this DGP. Note that this is
an oracle type of property in the sense that the
user does not in general have knowledge of the
true DGP, but if they did and used this information
their model would naturally be more efficient than
a method that did not (we elaborate further on this
below). The regression spline implementation in the
crs package does not presume this knowledge when
basis="auto" is used (the default) though it allows
for the possibility. However, were one to use the in-
correct smoothing spline model when the DGP is ad-
ditive (e.g. assume interaction when it is not present),
one could do worse than crs as can be seen in Table 2.
But note that when the DGP is non-additive, crs ap-
pears to be more efficient than the smoothing spline
approaches even when they employ, say, tensor ba-
sis functions to model the non-additive relationship
and are adapted to admit the presence of the binary
factor predictor (except gam which, as noted above,
uses a number of knots k that is optimized for these
DGPs, rather than the defaults which were used for
all other methods). From a minimax perspective, the
regression spline implementation in the crs package
performs relatively well overall. Apart from select-
ing the number of knots for gam as described above,
default settings were used throughout and therefore
it is likely that efficiency could be improved in some
cases by further tuning (this would apply to crs as
well, naturally).

To elaborate further on the issue of tuning and ef-
ficiency, if instead of using defaults for crs we were
to assume additivity as done for its peers in columns
2, 5, and 7 in Table 2 (options basis="additive",
kernel=FALSE), then for the additive DGP in Ta-
ble 2 the first row would instead be 0.94, 2.43,
3.29, 1.00, 2.69, 0.98, and 1.08, and we observe that
the efficiency of crs improves substantially even
when using a stochastic choice of the B-spline de-
gree and number of knots, while the other meth-
ods use non-stochastic choices for the number of
knots that are constant over all M = 1,000 Monte
Carlo replications. And if we followed the lead of
the anonymous referee who kindly suggested us-
ing non-stochastic values for the number of knots
(i.e. k=5) for gam in mgcv based on replications from
the additive DGP used for row 1 of Table 2, we
might choose non-stochastic values degree=c(4,4)
and segments=c(3,3) based on cross-validation and
the first row of Table 2 would instead be 1.18, 3.09,
4.19, 1.25, 3.42, 1.22, and 1.36. Furthermore, if in ad-
dition we used the option prune=TRUE enabling post-
estimation pruning of the model, the first row of Ta-
ble 2 would instead be 1.48, 3.91, 5.35, 1.59, 4.28, 1.53,
and 1.72 (note that this can only be used in conjunc-

tion with the option kernel=FALSE). The point to be
made is that indeed efficiency can be improved in
some cases by tuning of smoothing parameters and
choice of the basis, and this also holds for crs itself.

Demos, data, and additional infor-
mation

There exist a range of demonstrations available via
demo() including

1. radial_persp: R code for fitting and plotting a
3D perspective plot for the ‘radial’ function.

2. radial_rgl: R code for fitting and generating
a 3D real-time rendering plot for the ‘radial’
function using OpenGL (requires the rgl pack-
age (Adler and Murdoch, 2012)).

3. sine_rgl: R code for fitting and generating a
3D real-time rendering plot for a product sine
function using OpenGL.

4. radial_constrained_mean: R code for con-
strained radial function estimation.

5. cqrs.R: R code for fitting and plotting quantile
regression splines.

There exist a number of datasets including

1. cps71: Canadian cross-section wage data con-
sisting of a random sample taken from the 1971
Canadian Census Public Use Tapes for male
individuals having common education (grade
13). There are 205 observations in total (con-
tributed by Aman Ullah).

2. Engel95: British cross-section data consisting
of a random sample taken from the British
Family Expenditure Survey for 1995. The
households consist of married couples with an
employed head-of-household between the ages
of 25 and 55 years. There are 1655 household-
level observations in total (contributed by
Richard Blundell).

3. wage1: Cross-section wage data consisting of
a random sample taken from the U.S. Current
Population Survey for the year 1976. There are
526 observations in total (contributed by Jeffrey
Wooldridge).

We have tried to overload the crs method and as-
sociated S3 plot method to accommodate the needs
of a range of users and to automate a number of rou-
tine tasks. Warning messages are produced where
possible to guide the user towards the most appro-
priate choice of settings. User specified weights can
be provided to allow for weighted least squares and
weighted cross-validation. In addition, we have a
function crsiv that implements instrumental vari-
able regression splines that may be of interest to
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some users (see ?crsiv for details). Furthermore,
quantile regression splines are supported by setting
tau= a scalar in the range (0,1). Finally, we would
like to direct the reader to the vignettes crs, crs_faq,
and spline_primer for further examples, frequently
asked questions, and background information.
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Rfit: Rank-based Estimation for Linear
Models
by John D. Kloke and Joseph W. McKean

Abstract In the nineteen seventies, Jurečková
and Jaeckel proposed rank estimation for linear
models. Since that time, several authors have
developed inference and diagnostic methods for
these estimators. These rank-based estimators
and their associated inference are highly efficient
and are robust to outliers in response space. The
methods include estimation of standard errors,
tests of general linear hypotheses, confidence
intervals, diagnostic procedures including stu-
dentized residuals, and measures of influential
cases. We have developed an R package, Rfit,
for computing of these robust procedures. In this
paper we highlight the main features of the pack-
age. The package uses standard linear model
syntax and includes many of the main inference
and diagnostic functions.

Introduction

Rank-based estimators were developed as a robust,
nonparametric alternative to traditional likelihood
or least squares estimators. Rank-based regression
was first introduced by Jurečková (1971) and Jaeckel
(1972). McKean and Hettmansperger (1978) devel-
oped a Newton step algorithm that led to feasible
computation of these rank-based estimates. Since
then a complete rank-based inference for linear mod-
els has been developed that is based on rank-based
estimation analogous to the way that traditional
analysis is based on least squares (LS) estimation; see
Chapters 3-5 of the monograph by Hettmansperger
and McKean (2011) and Chapter 9 of Hollander and
Wolfe (1999). Furthermore, robust diagnostic proce-
dures have been developed with which to ascertain
quality of fit and to locate outliers in the data; see
McKean and Sheather (2009) for a recent discussion.
Kloke et al. (2009) extended this rank-based inference
to mixed models. Thus rank-based analysis is a com-
plete analysis analogous to the traditional LS analy-
sis for general linear models. This rank-based analy-
sis generalizes Wilcoxon procedures for simple loca-
tion models and, further, it inherits the same high ef-
ficiency that these simple nonparametric procedures
possess. In addition, weighted versions can have
high breakdown (up to 50%) in factor space (Chang
et al., 1999). In this paper, we discuss the Rfit pack-
age that we have developed for rank-based (R) esti-
mation and inference for linear models. We illustrate
its use on examples from simple regression to k-way
factorial designs.

The geometry of rank-based estimation is simi-
lar to that of LS. In rank-based regression, however,
we replace Euclidean distance with another measure
of distance which we refer to as Jaeckel’s dispersion
function; see Hettmansperger and McKean (2011) for
details. For a brief overview see McKean (2004).

Jaeckel’s dispersion function depends on the
choice of a score function. As discussed in
Hettmansperger and McKean (2011), the rank-based
fit and associated analysis can be optimized by a pru-
dent choice of scores. If the form of the error distri-
bution is known and the associated scores are used,
then the the analysis is fully efficient. In Rfit we have
included a library of score functions. The default
option is to use Wilcoxon (linear) scores, however it
is straightforward to create user-defined score func-
tions. We discuss score functions further in a later
section.

Others have developed software for rank-based
estimation. Kapenga et al. (1995) developed a For-
tran package and Crimin et al. (2008) developed a
web interface (cgi) with Perl for this Fortran pro-
gram. Terpstra and McKean (2005) developed a
set of R functions to compute weighted Wilcoxon
(WW) estimates including the high breakdown point
rank-based (HBR) estimate proposed by Chang et al.
(1999). See McKean et al. (2009) for a recent review.
Rfit differs from the WW estimates in that its estima-
tion algorithms are available for general scores and it
uses a standard linear models interface.

The package Rfit allows the user to implement
rank-based estimation and inference described in
Chapters 3-5 of Hettmansperger and McKean (2011)
and Chapter 9 of Hollander and Wolfe (1999). There
are other robust packages in R. For example, the R
function rlm of the R package MASS (Venables and
Ripley, 2002) computes M estimates for linear mod-
els based on the ψ functions of Huber, Hampel, and
Tukey (bisquare). The CRAN Task View on robust
statistical methods offers robust procedures for lin-
ear and nonlinear models including methods based
on M, M-S, and MM estimators. These procedures,
though, do not obtain rank-based estimates and as-
sociated inference as do the procedures in Rfit.

Rfit uses standard linear model syntax so that
those familiar with traditional parametric analysis
can easily begin running robust analyses. In this pa-
per, discussion of the assumptions are kept to a min-
imum and we refer the interested reader to the liter-
ature. All data sets used in demonstrating Rfit are
included in the package.

The rest of the paper is organized as follows.
The next section discusses the general linear model
and rank-based fitting and associated inference. The
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following section provides examples illustrating the
computation of Rfit for linear regression. Later sec-
tions discuss Rfit’s computation of one-way and
multi-way ANOVA as well as general scores and
writing user-defined score functions for computation
in Rfit. The final section discusses the future imple-
mentation in Rfit of rank-based procedures for mod-
els beyond the general linear model.

Rank-regression

As with least squares, the goal of rank-based regres-
sion is to estimate the vector of coefficients, β, of a
general linear model of the form:

yi = α + xT
i β + ei for i = 1, . . . n (1)

where yi is the response variable, xi is the vector of
explanatory variables, α is the intercept parameter,
and ei is the error term. We assume that the errors
are iid with probability density function (pdf) f (t).
For convenience, we write (1) in matrix notation as
follows

y = α1 + Xβ + e (2)

where y = [y1, . . . ,yn]T is the n × 1 vector of re-
sponses, X = [x1, . . . , xn]T is the n× p design matrix,
and e = [e1, . . . , en]T is the n× 1 vector of error terms.
The only assumption on the distribution of the er-
rors is that it is continuous; in that sense the model
is general. Recall that the least squares estimator is
the minimizor of Euclidean distance between y and
ŷLS = X β̂LS. To obtain the R estimator, a different
measure of distance is used that is based on the dis-
persion function of Jaeckel (1972). Jaeckel’s disper-
sion function is given by

D(β) = ‖y− Xβ‖ϕ (3)

where ‖ · ‖ϕ is a pseudo-norm defined as

‖u‖ϕ =
n

∑
i=1

a(R(ui))ui,

where R denotes rank, a(t) = ϕ
( t

n+1
)

, and ϕ is a
non-decreasing, square-integrable score function de-
fined on the interval (0,1). Assume without loss of
generality that it is standardized, so that

∫
ϕ(u)du =

0 and
∫

ϕ2(u)du = 1. Score functions are discussed
further in a later section.

The R estimator of β is defined as

β̂ϕ = Argmin‖y− Xβ‖ϕ. (4)

This estimator is a highly efficient estimator which is
robust in the Y-space. A weighted version can attain
50% breakdown in the X-space at the expense of a
loss in efficiency (Chang et al., 1999).

Inference

Under assumptions outlined in the previous sec-
tion, it can be shown that the solution to (4) is con-
sistent and asymptotically normal (Hettmansperger
and McKean, 2011). We summarize this result as fol-
lows:

β̂ϕ∼̇N
(

β,τ2
ϕ(XTX)−1

)
where τϕ is a scale parameter which depends on f
and the score function ϕ. An estimate of τϕ is nec-
essary to conduct inference and Rfit implements the
consistent estimator proposed by Koul et al. (1987).
Denote this estimator by τ̂ϕ. Then Wald tests and
confidence regions/intervals can be calculated. Let
se(β̂ j) = τ̂ϕ

(
XTX

)−1
jj where

(
XTX

)−1
jj is the jth di-

agonal element of
(
XTX

)−1
. Then an approximate

(1− α) ∗ 100% confidence interval for β j is

β̂ j ± t1−α/2,n−p−1se(β̂ j).

A Wald test of the general linear hypothesis

H0 : Mβ = 0 versus HA : Mβ 6= 0

is to reject H0 if

(M β̂ϕ)
T [M(XTX)−1)MT ]−1(M β̂)/q

τ̂2
ϕ

> F1−α,q,n−p−1

where q = dim(M). Similar to the reduced model
test of classical regression rank-based regression of-
fers a drop in dispersion test which is implemented in
the R function drop.test. For the above hypothe-
ses let θ̂ϕ be the rank-based coefficient estimate of
the reduced model [Model (1) constrained by H0].
As discussed in Theorem 3.7.2 of Hettmansperger
and McKean (2011), the reduced model design ma-
trix is easily obtained using a QR-decomposition on
MT . We have implemented this methodology in Rfit.
Similar to the LS reduction in sums of squares, the
rank-based test is based on a reduction of dispersion
from the reduced to the full model. Let D(θ̂ϕ) and
D(β̂ϕ) denote the reduced and full model minimum
dispersions, then the test is to reject H0 if

[D(θ̂ϕ)− D(β̂ϕ)]/q

τ̂ϕ/2
> F1−α,q,n−p−1

Computation

It can be shown that Jaeckel’s dispersion function (3)
is a convex function of β (Hettmansperger and McK-
ean, 2011). Rfit uses optim with option `BFGS' to
minimize the dispersion function. We investigated
other minimization methods (e.g. Nelder-Mead or
CG), however the quasi-Newton method works well
in terms of speed and convergence. An orthonormal
basis matrix, for the space spanned by the columns
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of X, is first calculated using qr which leads to bet-
ter performance in examples. The default initial fit is
based on an L1 fit using quantreg (Koenker, 2011).

Computations by Rfit of rank-based estimation
and associated inference are illustrated in the exam-
ples of the next section.

Rfit computations of rank-based fit-
ting of linear models

For the general linear model (1) the package Rfit ob-
tains the rank-based estimates and inference, as de-
scribed in the previous section. In this section we il-
lustrate this computation for two examples. The first
is for a simple linear model while the second is for a
multiple regression model.

Example 1 (Telephone data). We begin with a sim-
ple linear regression example using the telephone
data discussed in Rousseuw and Leroy (1987) These
data represent the number of telephone calls (in tens
of millions) placed in Belgium over the years 1950–
1973. The data are plotted in Figure 1. There are sev-
eral noticeable outliers which are due to a mistake
in the recording units for the years 1964–1969. This
is a simple dataset, containing only one explanatory
variable, however it allows us to easily highlight the
package and also demonstrate the robustness to out-
liers of the procedure. The main function of the pack-
age Rfit is rfit which, as the following code segment
illustrates, uses syntax similar to lm.

> library(Rfit)
> data(telephone)
> fit <- rfit(calls ~ year, data = telephone)
> summary(fit)

Call:
rfit(formula = calls ~ year, data = telephone)

Coefficients:
Estimate Std. Error t.value p.value

-284.313842 152.687751 -1.8621 0.07665 .
year 0.145861 0.077842 1.8738 0.07494 .
---
Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared (Robust): 0.3543158
Reduction in Dispersion Test:

12.07238 p-value: 0.00215

> plot(telephone)
> abline(fit)
> abline(lm(calls ~ year, data = telephone),
+ col = 2, lty = 2)
> legend("topleft", legend = c("R", "LS"),
+ col = 1:2, lty = 1:2)

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●
● ●

1950 1955 1960 1965 1970

0
5

10
15

20

year

ca
lls

R
LS

Figure 1: Scatter plot of the telephone data with over-
laid regression lines.

Further, the output is similar to that of lm and
can be interpreted in the same way. The estimate of
slope is 0.146 (tens of millions of calls per year) with
a standard error of 0.078. The t-statistic is the ratio
of the two and the p-value is calculated using a t-
distribution with n − 2 degrees of freedom. Hence
one could conclude that year is a marginally signifi-
cant predictor of the number of telephone calls.

The overlaid fitted regression lines in the scatter
plot in Figure 1 demonstrate the robustness of the
Wilcoxon fit and the lack of robustness of the least
squares fit.

Example 2 (Free fatty acid data). This is a data set
from Morrison (1983, p. 64) (c.f. Example 3.9.4 of
Hettmansperger and McKean (2011)). The response
variable is level of free fatty acid in a sample of pre-
pubescent boys. The explanatory variables are age
(in months), weight (in lbs), and skin fold thickness.
For this discussion, we chose the Wilcoxon (default)
scores for Rfit. Based on the residual and Q-Q plots
below, however, the underlying error distribution
appears to be right-skewed. In a later section we
analyze this data set using more appropriate (bent)
scores for a right-skewed distribution.

To begin with we demonstrate the reduction in
dispersion test discussed in the previous section.

> fitF <- rfit(ffa ~ age + weight + skin,
+ data = ffa)
> fitR <- rfit(ffa ~ skin, data = ffa)
> drop.test(fitF, fitR)

Drop in Dispersion Test
F-Statistic p-value
1.0754e+01 2.0811e-04
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As the code segment shows, the syntax is similar to
that of the anova function used for reduced model
testing in many of the parametric packages.
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Figure 2: Studentized residuals versus fitted values
for the free fatty acid data.
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Figure 3: Normal Q-Q plot of the studentized resid-
uals for the free fatty acid data.

Studentized residuals for rank-based fits are cal-
culated in a way similar to the LS studentized resid-
uals (see Chapter 3 of Hettmansperger and McK-
ean, 2011). We have implemented these residuals
in Rfit and demonstrate their use next. These are
the residuals plotted in the residual and Q-Q plots
in Figure 2 and Figure 3 respectively. The code is
similar to that of least squares analysis. The func-

tion fitted.values returns the fitted values and
residuals returns the residuals from the full model
fit. The function rstudent calculates the studentized
residuals.

Common diagnostic tools are the residual plot
(Figure 2)

> plot(fitted.values(fitF), rstudent(fitF))
> abline(h = c(-2, 2))

and normal probability plot of the studentized resid-
uals (Figure 3).

> qqnorm(residuals(fitF))

As is shown in the plots, there are several outliers
and perhaps the errors are from a right skewed dis-
tribution. We revist this example in a later section.

One-way ANOVA

Suppose we want to determine the effect that a sin-
gle factor A has on a response of interest over a spec-
ified population. Assume that A consists of k levels
or treatments. In a completely randomized design
(CRD), n subjects are randomly selected from the ref-
erence population and ni of them are randomly as-
signed to level i, i = 1, . . . k. Let the jth response in
the ith level be denoted by Yij, j = 1, . . ., i = 1, . . . ,k.
We assume that the responses are independent of one
another and that the distributions among levels dif-
fer by at most shifts in location.

Under these assumptions, the full model can be
written as

Yij = µi + eij j = 1, . . . ,ni i = 1, . . . ,k , (5)

where the eijs are iid random variables with density
f (x) and the parameter µi is a convenient location
parameter for the ith level, (for example, the mean or
median of the ith level). Generally, the parameters
of interest are the effects (contrasts), ∆ii′ = µi′ − µi,
i 6= i′,1, . . . ,k. Upon fitting the model a residual anal-
ysis should be conducted to check these model as-
sumptions.

Observational studies can also be modeled this
way. Suppose k independent samples are drawn
from k different populations. If we assume further
that the distributions for the different populations
differ by at most a shift in locations then Model (5)
is appropriate.

The analysis for this design is usually a test of the
hypothesis that all the effects are 0, followed by indi-
vidual comparisons of levels. The hypothesis can be
written as

H0 :µ1 = · · · = µk versus (6)

HA :µi 6= µi′ for some i 6= i′.

Confidence intervals for the simple contrasts ∆ii′ are
generally used to handle the comparisons. Rfit offers
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a reduction in dispersion test for testing (6) as well as
pairwise p-values adjusted for multiple testing. The
function oneway.rfit is illustrated in the following
example.

Example 3 (LDL cholesterol of quail).
Hettmansperger and McKean (2011, p. 295) dis-
cuss a study that investigated the effect of four
drug compounds on low density lipid (LDL) choles-
terol in quail. The drug compounds are labeled
as I, II, III, and IV. The sample size for each
of the first three levels is 10 while 9 quail re-
ceived compound IV. The boxplots shown in Fig-
ure 4 attest to a difference in the LDL levels.
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Figure 4: Comparison boxplots for quail data.

Using Wilcoxon scores, we fit the full model. The
summary of the test of hypotheses (6) as computed
by the Rfit function oneway.rfit follows. The result-
ing Q-Q plot (Figure 5) of the studentized residuals
indicates that the random errors eij have a skewed
distribution.
> data(quail)
> oneway.rfit(quail$ldl, quail$treat)

Call:
oneway.rfit(y = quail$ldl, g = quail$treat)

Overall Test of All Locations Equal

Drop in Dispersion Test
F-Statistic p-value

3.916404 0.016403

Pairwise comparisons using Rfit

data: quail$ldl and quail$treat

2 3 4
1 - - -
2 1.00 - -

3 0.68 0.99 -
4 0.72 0.99 0.55

P value adjustment method: none

Robust fits based on scores more appropriate than
the Wilcoxon for skewed errors are discussed later.
Note that the results from a call to oneway.rfit in-
clude the results from the call to rfit.
> anovafit <- oneway.rfit(quail$ldl, quail$treat)

Which may then be used for diagnostic procedures,
such as the Q-Q plot of the studentized residuals in
Figure 5.
> qqnorm(rstudent(anovafit$fit))
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Figure 5: Normal Q-Q plot of the studentized resid-
uals for the quail data.

With a p-value of 0.0164, generally, the null hypothe-
sis would be rejected and the inference would pass to
the comparisons of interest. Finally, we note that, the
LS test of the null hypothesis has p-value 0.35; hence,
with the LS analysis H0 would not be rejected. In
practice, one would not proceed with comparisons
with such a large p-value. Thus, for this data set
the robust and LS analyses have different interpre-
tations.

Multiple comparisons

The second stage of an analysis of a one-way design
usually consists of pairwise comparisons of the treat-
ments. The robust (1− α)100% confidence interval to
compare the ith and i′th treatments is given by

∆̂ii′ ± tα/2,n−1τ̂ϕ

√
1
ni

+
1

ni′
. (7)

Often there are many comparisons of interest. For ex-
ample, in the case of all pairwise comparisons there
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are (k
2) confidence intervals. Hence, the overall fam-

ily error rate is usually of concern. Multiple compar-
ison procedures (MCP) try to control the overall er-
ror rate to some degree. There are many MCPs from
which to choose; see Chapter 4 of Hettmansperger
and McKean (2011) for a review of many of these pro-
cedures from a robust perspective. In Rfit we sup-
ply a summary function that adjusts confidence in-
tervals and use three of the most popular such pro-
cedures: protected least significant difference (none);
Tukey-Kramer (tukey); and the Bonferroni (bonfer-
roni). These methods are described in many stan-
dard statistics texts.

Example 4 (LDL cholesterol of quail, continued). For
the quail data, we selected the Tukey-Kramer pro-
cedure for all six pairwise comparisons. Use of the
code and example output is given below. The multi-
ple comparison part of the output is:

> summary(oneway.rfit(quail$ldl, quail$treat),
+ method = "tukey")

Multiple Comparisons
Method Used tukey

I J Estimate St Err Lower CI Upper CI
1 1 2 -25.00720 8.26813 -47.30553 -2.70886
2 1 3 -3.99983 8.26813 -26.29816 18.29851
3 1 4 -5.00027 8.49469 -27.90963 17.90909
4 2 3 -21.00737 8.26813 -43.30571 1.29096
5 2 4 -20.00693 8.49469 -42.91629 2.90243
6 3 4 1.00044 8.49469 -21.90892 23.90981

The Tukey-Kramer procedure declares that the Drug
Compounds I and II differ significantly.

Multi-way ANOVA

In this section, we consider a k-way crossed facto-
rial experimental design. For these designs, the Rfit
function raov computes the rank-based analysis for
all 2k − 1 hypotheses including the main effects and
interactions of all orders. The design may be bal-
anced or unbalanced. For simplicity, we briefly dis-
cuss the analysis in terms of a cell mean (median)
model; see Hocking (1985) for details on the tradi-
tional LS analysis and Chapter 4 of Hettmansperger
and McKean (2011) for the rank-based analysis. For
this paper, we illustrate Rfit using a two-way crossed
factorial design, but similarly Rfit computes the
rank-based analysis of a k-way design.

Let A and B denote the two factors with levels a
and b, respectively. Let Yijk denote the response for
the kth replication at levels i and j of factors A and B,
respectively. Then the full model can be expressed as

Yijk = µij + eijk k = 1 . . . nij

i = 1 . . . a
j = 1 . . . b,

(8)

where eijk are iid random variables with pdf f (t).
Since the effects of interest are contrasts in the µij’s,
these parameters can be either cell means or medi-
ans, (actually any location functional suffices). Rfit
implements a reduction in dispersion tests for test-
ing all main effects and interactions.

For the two-way model, the three hypotheses of
immediate interest are the main effects hypotheses
and the interaction hypothesis. We have chosen Type
III hypotheses which are easy to interpret even for
severely unbalanced designs. Following Hocking
(1985), the hypothesis matrices M can easily be com-
puted in terms of Kronecker products. As discussed
in a previous section, for these tests the drop in dis-
persion test statistics can easily be constructed. We
have implemented this formulation in Rfit.

Example 5 (Box-Cox data). Consider the data set dis-
cussed by Box and Cox (1964). The data are the re-
sults of a 3 × 4 two-way design, where forty-eight
animals were exposed to three different poisons and
four different treatments. The design is balanced
with four replications per cell. The response was the
log survival time of the animal. An interaction plot
using the cell medians is presented in Figure 6. Ob-
viously the profiles are not parallel and interaction is
present.
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Figure 6: Interaction Plot for Box-Cox Data.

The output below displays the Wilcoxon ANOVA
table, which indicates that interaction is highly sig-
nificant, p = 0.0143, confirming the profile plot. On
the other hand, the LS test F statistic for interaction is
1.87 with p = 0.1123. Hence, the LS test fails to detect
interaction.

> data(BoxCox)
> attach(BoxCox)
> fit <- raov(logSurv ~ Treatment + Poison)
> fit
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Robust ANOVA Table
DF RD Mean RD F p-value

T 3 2.9814770 0.9938257 21.263421 4.246022e-08
P 2 3.6987828 1.8493914 39.568699 8.157360e-10
T:P 6 0.8773742 0.1462290 3.128647 1.428425e-02

Writing score functions for Rfit

As discussed earlier, we must choose a score function
for rank-based fitting. For most datasets the default
option of Wilcoxon scores works quite well, however,
occasionally choosing a different score function can
lead to a more efficient analysis. In this section we
first discuss score functions in general and then il-
lustrate how the user may create his own score func-
tion. We have placed the score functions in an ob-
ject of class "scores". A "scores" object consists of
two objects of type function and an optional numeric
object. The functions are the score function phi and
it’s derivative Dphi. The derivative is necessary in
estimating τϕ. Below is what the class for Wilcoxon
scores looks like.

> wscores

An object of class "scores"
Slot "phi":
function(u) sqrt(12)*(u-0.5)

Slot "Dphi":
function(u) rep(sqrt(12),length(u))

Slot "param":
NULL

Other score functions included in Rfit are listed in Ta-
ble 1. A plot of the bent score functions is provided in
Figure 7. Other score functions can be plotted by get-
ting the scores using the method getScores. For ex-
ample the commands u<-seq(0.01,0.99,by=0.01)
plot(u,getScores(nscores,u)) graphs the normal
scores.

Score Keyword Recommended usage

Wilcoxon wscores moderate tailed
Normal nscores light-moderate tailed
Bent1 bentscores1 highly right skewed
Bent2 bentscores2 light tailed
Bent3 bentscores3 highly left skewed
Bent4 bentscores4 moderately heavy

tailed

Table 1: Table of available score functions. Unless
otherwise noted, distribution is assumed to be sym-
metric.

Next we illustrate how to create the score func-
tion for the bent scores. Bent scores are recommended
when the errors come from a skewed distribution.

An appropriate bent score function for skewed dis-
tribution with a right heavy tail is

φ(u) =

{
4u− 1.5 if u ≤ 0.5
0.5 if u > 0.5

The following code segment defines the scores.

> bent.phi <- function(u, ...)
+ ifelse(u < 0.5, 8/3 * u - 1, 1/3)
> bent.Dphi <- function(u, ...)
+ ifelse(u < 0.5, 8/3, 0)
> bentscores <- new("scores", phi = bent.phi,
+ Dphi = bent.Dphi)

They are displayed graphically in the top left quad-
rant of Figure 7.
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Figure 7: Plots of four bent score functions.

Below we implement the newly defined score
functions using the free fatty acid data previ-
ously analysed using Wilcoxon scores. One could
also use the scores provided by Rfit with option
scores=bentscores1 to obtain the same result.
> summary(rfit(ffa ~ age + weight + skin,
+ scores = bentscores, data = ffa))

Call:
rfit.default(formula = ffa ~ age + weight + skin,

scores = bentscores, data = ffa)

Coefficients:
Estimate Std. Error t.value p.value

1.35957548 0.18882744 7.2001 1.797e-08 ***
age -0.00048157 0.00178449 -0.2699 0.7888044
weight -0.01539487 0.00260504 -5.9097 9.176e-07 ***
skin 0.35619596 0.09090132 3.9185 0.0003822 ***
---
Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Multiple R-squared (Robust): 0.4757599
Reduction in Dispersion Test:

11.19278 p-value: 2e-05

The results are similar to those presented in
Hettmansperger and McKean (2011).

Summary and future work

This paper illustrates the usage of a new R package,
Rfit, for rank-based estimation and inference. Rank-
based methods are robust to outliers and offer the
data analyst an alternative to least squares. Rfit in-
cludes algorithms for general scores and a library
of score functions is included. Functions for regres-
sion as well as one-way and multi-way anova are in-
cluded. We illustrated the use of Rfit on several real
data sets.

We are in the process of extending Rfit to include
other robust rank-based procedures which are dis-
cussed in Chapters 3 and 5 of Hettmansperger and
McKean (2011). These include autoregressive time-
series models, cluster correlated data (mixed mod-
els), and nonlinear models. We are also develop-
ing weighted versions of rank-based estimation that
can be used in mixed effects modeling as discussed
in Kloke et al. (2009) as well as the computation of
high breakdown rank-based estimation discussed in
Chang et al. (1999).
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Graphical Markov Models with Mixed
Graphs in R
by Kayvan Sadeghi and Giovanni M. Marchetti

Abstract In this paper we provide a short tuto-
rial illustrating the new functions in the package
ggm that deal with ancestral, summary and rib-
bonless graphs. These are mixed graphs (con-
taining three types of edges) that are impor-
tant because they capture the modified inde-
pendence structure after marginalisation over,
and conditioning on, nodes of directed acyclic
graphs. We provide functions to verify whether
a mixed graph implies that A is independent
of B given C for any disjoint sets of nodes and
to generate maximal graphs inducing the same
independence structure of non-maximal graphs.
Finally, we provide functions to decide on the
Markov equivalence of two graphs with the
same node set but different types of edges.

Introduction and background

Graphical Markov models have become a part of the
mainstream of statistical theory and application in
recent years. These models use graphs to represent
conditional independencies among sets of random
variables. Nodes of the graph correspond to random
variables and edges to some type of conditional de-
pendency.

Directed acyclic graphs

In the literature on graphical models the two most
used classes of graphs are directed acyclic graphs
(DAGs) and undirected graphs . DAGs have proven
useful, among other things, to specify the data gener-
ating processes when the variables satisfy an under-
lying partial ordering.

For instance, suppose that we have four observed
variables: Y, the ratio of systolic to diastolic blood
pressure and X the diastolic blood pressure, both on
a log scale; Z, the body mass and W, the age, and that
a possible generating process is the following linear
recursive regression model

Y = γYZZ + γYUU + εY

X = γXWW + γXUU + εX

Z = γZVW + εZ

W = εW ; U = εU ,

where all the variables are mean-centered and the εs
are zero mean, mutually independent Gaussian ran-
dom errors. In this model we assume that there exists
a genetic factor U influencing the ratio and levels of
blood pressure.

This model can be represented by the DAG
in Figure 1(a) with nodes associated with the
variables and edges indicating the dependencies
represented by the regression coefficients (γs).

Y

U

Z

X W

Y Z

X W

(a) (b)

Figure 1: (a) A DAG. (b) A regression chain graph.

From the graph it is seen, for instance, that the
ratio of the two blood pressures (Y) is directly influ-
enced by body mass (Z) but not by age (W). Thus a
consequence of the model is that the variables must
satisfy a set of conditional independencies: for exam-
ple, the ratio of the blood pressure is independent of
the age given the body mass, written as Y ⊥⊥W|Z.

A remarkable result is that the independencies
can be deduced from the graph alone, without ref-
erence to the equations, by using a criterion called
d-separation. In fact, in the graph of Figure 1(a), the
nodes Y and W are d-separated given Z. This can
be checked using special graph algorithms included,
for example, in packages gRain (Højsgaard, 2012)
and ggm (Marchetti et al., 2012). For more details on
DAG models and their implementation in R see the
extensive discussion in Højsgaard et al. (2012).

Hidden variables and induced graphs

The model has four observed variables but includes
an unobserved variable, that is, the genetic factor U.
When U is hidden the model for the observed vari-
ables becomes

Y = γYZZ + ηY

X = γXWW + ηX

Z = γZVW + εZ

W = εW ;

with two correlated errors ηY = γYUU + εY and ηX =
γXUU + εX , such that cov(ηY,ηX) = ωYX . As a con-
sequence the model is still a recursive model and the
parameters have a regression parameter interpreta-
tion, but contain some correlated residuals.

The induced model is said to be obtained after
marginalisation over U. In this model some of the
original independencies are lost, but we can observe
the implied independencies Y ⊥⊥W|Z and X ⊥⊥ Z|W.
Also it can be shown that it is impossible to represent
such independencies in a DAG model defined for the
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four observed variables. Therefore, we say that DAG
models are not stable under marginalisation.

A mixed graph with arrows and arcs, as shown in
Figure 1(b), can be used to represent the induced in-
dependence model after marginalisation over U. In
this representation, beside the arrows, represented
by the γs, we have the arc Y≺ �X associated with
the (partial) correlation ωYX .

The graph of Figure 1(b) belongs to a class of
models called regression chain graph models . This
class generalises the recursive generating process of
DAGs by permitting joint responses, coupled in the
graph by arcs, and thus appears to be an essential
extension for applications; see Cox and Wermuth
(1996). Regression chain graphs can be used as a con-
ceptual framework for understanding multivariate
dependencies, for example in longitudinal studies.
The variables are arranged in a sequence of blocks,
such that (a) all variables in one block are of equal
standing and any dependence between them is rep-
resented by an arc, and (b) all variables in one block
are responses to variables in all blocks to their right,
so that any dependencies between them are directed,
represented by an arrow pointing from right to left.
The graph shows how the data analysis can be bro-
ken down into a series of regressions and informs
about which variables should or should not be con-
trolled for in each regression.

More general induced graphs

The class of regression chain graphs is not, however,
stable under marginalisation. For instance, suppose
that the generating process for the blood pressure
data is defined by the more general regression chain
graph of Figure 2(a) where L is a further variable rep-
resenting a common hidden cause of systolic blood
pressure and body mass.

Then, after marginalisation over L, the model
can still be described by a linear system of equa-
tions with correlated residuals and can be repre-
sented by the mixed graph shown in Figure 2(b).
But the resulting graph is not a DAG nor a re-
gression chain graph because it contains the pair
of variables (Y, Z) coupled by both a directed edge
and a path composed by bi-directed arcs. Thus Y
cannot be interpreted as a pure response to Z and
in addition Y and Z are not two joint responses.

X W

Y Z

L

X W

Y Z

(a) (b)

Figure 2: (a) A regression chain graph model; (b) the
mixed graph obtained after marginalisation over L,
which is not a regression chain graph.

Stable mixed graphs

The previous illustrations show that when there
are unobserved variables, DAG or regression chain
graph models are no longer appropriate. The dis-
cussion could be extended to situations where there
are some selection variables that are hidden variables
that are conditioned on.

This motivates the introduction of a more general
class of mixed graphs , which contains three types of
edges, denoted by lines, , arrows, �, and arcs
(bi-directed arrows), ≺ �. In the case of regression
models, explained above, lines generally link pairs of
joint context (explanatory) variables and arcs gener-
ally link pairs of joint response variables.

There are at least three known classes of mixed
graphs without self loops that remain in the same
class, i.e. that are stable under marginalisation and
conditioning . The largest one is that of ribbonless
graphs (RGs) (Sadeghi, 2012a), defined as a modifi-
cation of MC-graphs (Koster, 2002). Then, there is the
subclass of summary graphs (SGs) (Wermuth, 2011),
and finally the smallest class of the ancestral graphs
(AGs) (Richardson and Spirtes, 2002).

Four tasks of the current paper

In this paper, we focus on the implementation of
four important tasks performed on the class of mixed
graphs in R:

1. Generating different types of stable mixed
graphs after marginalisation and conditioning.

2. Verifying whether an independency of the
form Y ⊥⊥W|Z holds by using a separation cri-
terion called m-separation.

3. Generating a graph that induces the same in-
dependence structure as an input mixed graph
such that the generated graph is maximal , i.e.
each missing edge of the generated graph im-
plies at least an independence statement.

4. Verifying whether two graphs are Markov
equivalent , i.e. they induce the same indepen-
dencies, and whether, given a graph of a spe-
cific type, there is a graph of a different type
that is Markov equivalent to it.

Package ggm

The tasks above are illustrated by using a set of
new functions introduced into the R package ggm
(Marchetti et al., 2012). In the next section we give
the details of how general mixed graphs are defined.
The following four sections deal with the four tasks
respectively. For each task we give a brief introduc-
tion at the beginning of its corresponding section.

Some of the functions generalise previous contri-
butions of ggm discussed in Marchetti (2006). The
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ggm package has been improved and it is now more
integrated with other contributed packages related
to graph theory, such as graph (Gentleman et al.,
2012), igraph (Csardi and Nepusz, 2006), and gRbase
(Dethlefsen and Højsgaard, 2005), which are now re-
quired for representing and plotting graphs. Specifi-
cally, in addition to adjacency matrices, all the func-
tions in the package now accept graphNEL and igraph
objects as input, as well as a new character string rep-
resentation. A more detailed list of available pack-
ages for graphical models can be found at the CRAN
Task View gRaphical Models in R at http://cran.
r-project.org/web/views/gR.html.

Defining mixed graphs in R

For a comprehensive discussion on the ways of
defining a directed acyclic graph, see Højsgaard et al.
(2012). A mixed graph is a more general graph type
with at most three types of edge: directed, undi-
rected and bi-directed, with possibly multiple edges
of different types connecting two nodes. In ggm we
provide some special tools for mixed graphs that are
not present in other packages. Here we briefly il-
lustrate some methods to define mixed graphs and
we plot them with a new function, plotGraph, which
uses a Tk GUI for basic interactive graph manipula-
tion.

The first method is based on a generalisation of
the adjacency matrix. The second uses a descrip-
tive vector and is easy to use for small graphs. The
third uses a special function makeMG that allows the
directed, undirected, and bi-directed components of
a mixed graph to be combined.

Adjacency matrices for mixed graphs

In the adjacency matrix of a mixed graph we code
the three different edges with a binary indicator: 1
for directed, 10 for undirected and 100 for bi-directed
edges. When there are multiple edges the codes are
added.

Thus the adjacency matrix of a mixed graph H with
node set N and edge set F is an |N| × |N| matrix ob-
tained as A = B + S + W by adding three matrices
B = (bij), S = (sij) and W = (wij) defined by

bij =

{
1, if and only if i �j in H;
0, otherwise.

sij = sji =

{
10, if and only if i j in H;
0, otherwise.

wij = wji =

{
100, if and only if i≺ �j in H;
0, otherwise.

Notice that because of the symmetric nature of lines
and arcs S and W are symmetric, whereas B is not
necessarily symmetric.

For instance consider the following general
mixed graph.:

Q W

X

Y Z

Notice that this graph is not of much interest per se,
because it is not a stable graph, but it is introduced
just to illustrate the structure of the adjacency matrix.

This graph can be defined by the commands

> mg <- matrix(c( 0, 101, 0, 0, 110,
100, 0, 100, 0, 1,
0, 110, 0, 1, 0,
0, 0, 1, 0, 100,

110, 0, 0, 100, 0),
5, 5, byrow = TRUE)

> N <- c("X","Y","Z","W","Q")
> dimnames(mg) <- list(N, N)
> mg

X Y Z W Q
X 0 101 0 0 110
Y 100 0 100 0 1
Z 0 110 0 1 0
W 0 0 1 0 100
Q 110 0 0 100 0

and plotted with plotGraph(mg).

Defining mixed graphs by using vectors

A more convenient way of defining small mixed
graphs is based on a simple vector coding as fol-
lows. The graph is defined by a character vec-
tor of length 3 f , where f = |F| is the number of
edges, and the vector contains a sequence of triples
〈type,label1,label2〉, where the type is the edge
type and label1 and label2 are the labels of the two
nodes. The edge type accepts "a" for a directed ar-
row , "b" for an arc and "l" for a line. Notice that
isolated nodes may not be created by this method.
For example, the vector representation of the previ-
ous mixed graph is

> mgv <- c("b","X","Y","a","X","Y","l","X","Q",
"b","Q","X","a","Y","Q","b","Y","Z",
"a","Z","W","a","W","Z","b","W","Q")

Once again as in the DAG case we can use
plotGraph(mgv) to plot the defined graph.

Mixed graph using the function makeMG

Finally the adjacency matrix of a mixed graph may
be built up with the function makeMG. This function
requires three arguments dg, ug and bg, correspond-
ing respectively to the three adjacency matrices B, S
and W composing the mixed graph. These may also
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be obtained by the constructor functions DG and UG of
ggm for directed and undirected graphs respectively.
Thus for the previous mixed graph we can issue the
command

> mg <- makeMG(dg = DG(Y ~ X, Z ~ W, W ~ Z),
ug = UG(~ X*Q),
bg = UG(~ Y*X + X*Q + Q*W + Y*Z))

obtaining the same adjacency matrix (up to a permu-
tation).

Generating stable mixed graphs

There are four general classes of stable mixed graphs.
The more general class is that of ribbonless

graphs: these are mixed graphs without a spe-
cific set of subgraphs called ribbons. Figure 3 be-
low shows two examples of ribbons. The exact
definition of ribbons is given in Sadeghi (2012a).

h i j

k l

h

i j

(a) (b)

Figure 3: Two commonly seen ribbons 〈h, i, j〉.

The lack of ribbons ensures that, for any RG, there
is a DAG whose independence structure, i.e. the set
of all conditional independence statements that it in-
duces after marginalisation over, and conditioning
on, two disjoint subsets of its node set can be repre-
sented by the given RG. This is essential, as it shows
that the independence structures corresponding to
RGs are probabilistic, that is, there exists a proba-
bility distribution P that is faithful with respect to
any RG, i.e. for random vectors XA, XB, and XC with
probability distribution P, XA ⊥⊥ XB |XC if and only
if 〈A, B |C〉 is in the induced independence structure
by the graph. This probability distribution is the
marginal and conditional of a probability distribu-
tion that is faithful to the generating DAG.

The other classes of stable graphs are further sim-
plification of the class of ribbonless graphs. Sum-
mary graphs have the additional property that there
are neither arrowheads pointing to lines (i.e. ≺ � ◦

or � ◦ ) nor directed cycles with all ar-
rows pointing towards one direction.

Ancestral graphs have the same constraints as
summary graphs plus the additional prohibition of
bows , i.e. arcs with one endpoint that is an ances-
tor of the other endpoint; see Richardson and Spirtes
(2002).

However, for some ribbonless and summary
graphs the corresponding parametrisation is some-
times not available even in the case of a standard
joint Gaussian distribution.

If we suppose that stable mixed graphs are only
used to represent the independence structure after
marginalisation and conditioning, we can consider
all types as equally appropriate. However, each of
the three types has been used in different contexts
and for different purposes. RGs have been intro-
duced in order to straightforwardly deal with the
problem of finding a class of graphs that is closed
under marginalisation and conditioning by a simple
process of deriving them from DAGs. SGs are used
when the generating DAG is known, to trace the ef-
fects in the sets of regressions as described earlier.
AGs are simple graphs, meaning that they do not
contain multiple edges and the lack of bows ensures
that they satisfy many desirable statistical properties.

In addition, when one traces the effects in regres-
sion models with latent and selection variables (as
described in the introduction) ribbonless graphs are
more alerting to possible distortions (due to indirect
effects) than summary graphs, and summary graphs
are more alerting than ancestral graphs; see also Wer-
muth and Cox (2008). For the exact definition and a
thorough discussion of all such graphs, see Sadeghi
(2012a).

Sadeghi (2012a) also defines the algorithms for
generating stable mixed graphs of a specific type
for a given DAG or for a stable mixed graph of
the same type after marginalisation and conditioning
such that they induce the marginal and conditional
DAG-independence structure. We implement these
algorithms in this paper.

By “generating graphs” we mean applying the
defined algorithms, e.g. those for generating stable
mixed graphs to graphs, in order to generate new
graphs.

Functions to generate the three main types
of stable mixed graphs

Three main functions RG, SG, and AG are available
to generate and plot ribbonless, summary, and an-
cestral graphs from DAGs, using the algorithms in
Sadeghi (2012a). These algorithms look for the paths
with three nodes and two edges in the graph whose
inner nodes are being marginalised over or condi-
tioned on, and generate appropriate edges between
the endpoints. These have two important properties:
(a) they are well-defined in the sense that the pro-
cess can be performed in any order and will always
produce the same final graph, and (b) the generated
graphs induce the modified independence structure
after marginalisation and conditioning; see Sadeghi
(2012a) for more details.

The functions RG, SG, and AG all have three argu-
ments: a, the given input graph, M, the marginalisa-
tion set and C, the conditioning set. The graph may
be of class "graphNEL" or of class "igraph" or may
be represented by a character vector, or by an adja-
cency matrix, as explained in the previous sections.
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The sets M and C (default c()) must be disjoint vec-
tors of node labels, and they may possibly be empty
sets. The output is always the adjacency matrix of
the generated graph. There are two additional logi-
cal arguments showmat and plot to specify whether
the adjacency matrix must be explicitly printed (de-
fault TRUE) and the graph must be plotted (default
FALSE).

Some examples

We start from a DAG defined in two ways, as an ad-
jacency matrix and as a character vector:

> ex <- matrix(c(0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,1,0,1,0,1,0,
0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,
0,0,0,0,0,1,1,0),

8, 8, byrow = TRUE)
>
> exvec <- c("a",1,2,"a",2,3,"a",4,3,

"a",4,5,"a",4,7,"a",5,6,
"a",7,6,"a",8,6,"a",8,7)

> plotGraph(ex)

1

2

3

45

6 7

8

Then we define two disjoint sets M and C to
marginalise over and condition on

> M <- c(5,8)
> C <- 3

and we generate the ribbonless, summary and ances-
tral graphs from the DAG with the associated plot.

> RG(ex, M, C, plot = TRUE)

1 2 4 6 7
1 0 1 0 0 0
2 0 0 10 0 0
4 0 10 0 1 1
6 0 0 0 0 100
7 0 0 0 101 0

1

24

6 7

The summary graph is also plotted:

> plotGraph(SG(ex,M,C))

1 2 4 6 7
1 0 10 0 0 0
2 10 0 10 0 0
4 0 10 0 1 1
6 0 0 0 0 100
7 0 0 0 101 0

1

24

6 7

The induced ancestral graph is obtained from the
DAG defined as a vector.

> AG(exvec, M, C, showmat = FALSE, plot = TRUE)

1

24

6 7

Verifying m-separation

To globally verify whether an independence state-
ment of the form A ⊥⊥ B |C is implied by a mixed
graph we use a separation criterion called m-
separation . This has been defined in Sadeghi (2012a)
for the general class of loopless mixed graphs and
is the same as the m-separation criterion defined in
Richardson and Spirtes (2002) for ancestral graphs.
It is also a generalisation of the d-separation criterion
for DAGs (Pearl, 1988). This is a graphical criterion
that looks to see if the graph contains special paths
connecting two sets A and B and involving a third
set C of the nodes. These special paths are said to be
active or m-connecting. For example, a directed path
from a node in A to a node in B that does not contain
any node of C is m-connecting A and B. However, if
such a path intercepts a node in C then A and B are
said to be m-separated given C. However, this be-
haviour can change if the path connecting A and B
contains a collision node or a collider for short, that
is a node c where the edges meet head-to-head, e.g.
�c≺ or �c≺ �.
In general, a path is said to be m-connecting given

C if all its collider nodes are in C or in the set of an-
cestors of C, and all its non-collider nodes are outside
C. For two disjoint subsets A and B of the node set,
we say that C m-separates A and B if there is no m-
connecting path between A and B given C.

Function for verifying m-separation

The m-separation criterion has been implemented in
ggm and is available by using the function msep.
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Note that there is still a function dSep in ggm for d-
separation, although it is superseded by msep.

The function has four arguments, where the first
is the graph a, in one of the forms discussed before,
and the other three are the disjoint sets A, B, and C.

Examples

For example, consider the DAG of Figure 1(a):

> a <- DAG(Y ~ U + Z, X ~ U + W, Z ~ W)

We see that Y and W are m-separated given Z:

> msep(a, "Y", "W", "Z")

[1] TRUE

and the same statement holds for the induced ances-
tral graph after marginalisation over U:

> b <- AG(a, M = "U")
> msep(b, "Y", "W", "Z")

[1] TRUE

This was expected because the induced ancestral
graph respects all the independence statements in-
duced by m-separation in the DAG, and not involv-
ing the variable U.

As a more complex example, consider the follow-
ing summary graph,

> a <- makeMG(dg= DG(W ~ Z, Z ~ Y + X),
bg= UG(~ Y*Z))

> plotGraph(a)

W Z

Y

X

Then, the two following statements verify whether X
is m-separated from Y given Z, and whether X is m-
separated from Y (given the empty set):

> msep(a, "X", "Y", "Z")

[1] FALSE

> msep(a, "X", "Y")

[1] TRUE

Verifying maximality

For many subclasses of graphs a missing edge cor-
responds to some independence statement, but for
the more complex classes of mixed graphs this is not
necessarily true. A graph where each of its miss-
ing edges is related to an independence statement is
called a maximal graph . For a more detailed discus-
sion on maximality of graphs and graph-theoretical

conditions for maximal graphs, see Richardson and
Spirtes (2002) and Sadeghi and Lauritzen (2012).
Sadeghi and Lauritzen (2012) also gave an algorithm
for generating maximal ribbonless graphs that in-
duces the same independence structure as an input
non-maximal ribbonless graph. This algorithm has
been implemented in ggm as illustrated below.

Function for generating maximal graphs

Given a non-maximal graph, we can obtain the ad-
jacency matrix of a maximal graph that induces the
same independence statements with the function
Max. This function uses the algorithm by Sadeghi
(2012b), which is an extension of the implicit algo-
rithm presented in Richardson and Spirtes (2002).
The related functions MAG, MSG, and MRG, are just
handy wrappers to obtain maximal AGs, SGs and
RGs, respectively. For example,

> H <- matrix(c(0 ,100, 1, 0,
100,0 ,100, 0,
0 ,100, 0,100,
0, 1 ,100, 0), 4, 4)

> plotGraph(H)

1

2 3

4

is a non-maximal ancestral graph, with the miss-
ing edge between nodes 1 and 4 that is not associ-
ated with any independence statement. Its associ-
ated maximal graph is obtained by

> Max(H)

1 2 3 4
1 0 100 0 100
2 100 0 100 1
3 1 100 0 100
4 100 0 100 0

> plotGraph(Max(H))

1

2 3

4
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As the graph H is an ancestral graph (as may be veri-
fied by the function isAG), we obtain the same result
with

> MAG(H)

1 2 3 4
1 0 100 0 100
2 100 0 100 1
3 1 100 0 100
4 100 0 100 0

Verifying Markov equivalence

Two graphical models are said to be Markov equiv-
alent when their associated graphs, although non-
identical, imply the same independence structure,
that is the same set of independence statements.
Thus two Markov equivalent models cannot be dis-
tinguished on the basis of statistical tests of inde-
pendence, even for arbitrary large samples. For in-
stance, it is easy to verify that the two directed acyclic
graphs models X≺ U �Y and X≺ U≺ Y
both imply the same independence statements, and
are, therefore, Markov equivalent.

Sometimes, we can check whether graphs of dif-
ferent types are Markov equivalent. For instance the
DAG X �U≺ Y is Markov equivalent to the bi-
directed graph X≺ �U≺ �Z.

Markov equivalent models may be useful in ap-
plications because (a) they may suggest alternative
interpretations of a given well-fitting model or (b)
on the basis of the equivalence one can choose a
simpler fitting algorithm. For instance, the previ-
ous bi-directed graph model may be fitted, using the
Markov equivalent DAG, in terms of a sequence of
univariate regressions.

In the literature several problems related to
Markov equivalences have been discussed. These in-
clude (a) verifying the Markov equivalence of given
graphs, (b) presenting conditions under which a
graph of a specific type can be Markov equivalent
to a graph of another type, and (c) providing algo-
rithms for generating Markov equivalent graphs of a
certain type from a given graph.

Functions for testing Markov equivalences

The function MarkEqRcg tests whether two regression
chain graphs are Markov equivalent. This function
simply finds the skeleton and all unshielded collider
V-configurations in both graphs and tests whether
they are identical, see Wermuth and Sadeghi (2012).
The arguments of this function are the two graphs a
and b in one of the allowed forms. For example,

> H1 <- makeMG(dg = DAG(W ~ X, Q ~ Z),
bg = UG(~ X*Y + Y*Z + W*Q))

> H2 <- makeMG(dg = DAG(W ~ X, Q ~ Z, Y ~ X + Z),
bg = UG(~ W*Q))

> H3 <- DAG(W ~ X, Q ~ Z + W, Y ~ X + Z)

> plotGraph(H1); plotGraph(H2); plotGraph(H3)

W

X

Q

Z

Y

W

X

Q

Z

Y

W

X

Q

Z

Y

We can now verify Markov equivalence as follows

> MarkEqRcg(H1,H2)

[1] TRUE

> MarkEqRcg(H1,H3)

[1] FALSE

> MarkEqRcg(H2,H3)

[1] FALSE

To test Markov equivalence for maximal ancestral
graphs the algorithm is much more computation-
ally demanding (see Ali and Richardson (2004)) and,
for this purpose, the function MarkEqMag has been
provided. Of course, one can use this function
for Markov equivalence of regression chain graphs
(which are a subclass of maximal ancestral graphs).
For example,

> A1 <- makeMG(dg = DG(W ~ Y),
bg = UG(~ X*Y + Y*Z + Z*W))

> A2 <- makeMG(dg = DG(W ~ Y, Y ~ X),
bg = UG(~ Y*Z + Z*W))

> A3 <- makeMG(dg = DG(W ~ Y, Y ~ X, Z ~ Y),
bg = UG(~ Z*W))

> plotGraph(A1); plotGraph(A2); plotGraph(A3)

W

Y

X

Z

W

Y

X

Z

W

Y

X

Z

> MarkEqMag(H1,H2)

[1] TRUE

> MarkEqMag(H1,H3)

[1] FALSE

> MarkEqMag(H2,H3)

[1] FALSE
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Functions for generating Markov equiva-
lent graphs of a specific type

To obtain an alternative interpretation of an indepen-
dence structure by using different graphical models,
it is important to verify if a given graph is capable
of being Markov equivalent to a graph of a specific
class of graphs (such as DAGs, undirected graphs,
or bidirected graphs), and if so, to obtain as a result
such a graph. The functions RepMarDAG, RepMarUG,
and RepMarBG do this for DAGs, undirected graphs,
and bidirected graphs, respectively. For associated
conditions and algorithms, see Sadeghi (2012b). For
example, given the following graph

> H <- matrix(c( 0,10, 0, 0,
10, 0, 0, 0,
0, 1, 0,100,
0, 0,100, 0), 4, 4)

> plotGraph(H)

1 2 3 4

we can see that it is Markov equivalent to a DAG, by

> RepMarDAG(H)

$verify
[1] TRUE

$amat
1 2 3 4

1 0 1 0 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

> plotGraph(RepMarDAG(H))

1 2 3 4

On the other hand it is not Markov equivalent to an
undirected graph or to a bidirected graph.

> RepMarUG(H)

$verify
[1] FALSE

$amat
[1] NA

> RepMarBG(H)

$verify
[1] FALSE

$amat
[1] NA
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The State of Naming Conventions in R
by Rasmus Bååth

Abstract Most programming language com-
munities have naming conventions that are gen-
erally agreed upon, that is, a set of rules that
governs how functions and variables are named.
This is not the case with R, and a review of un-
official style guides and naming convention us-
age on CRAN shows that a number of different
naming conventions are currently in use. Some
naming conventions are, however, more popu-
lar than others and as a newcomer to the R com-
munity or as a developer of a new package this
could be useful to consider when choosing what
naming convention to adopt.

Introduction

Most programming languages have official naming
conventions, official in the sense that they are is-
sued by the organization behind the language and
accepted by its users. This is not the case with R.
There exists the R internals document1 which covers
the coding standards of the R core team but it does
not suggest any naming conventions. Incoherent
naming of language entities is problematic in many
ways. It makes it more difficult to guess the name of
functions (for example, is it as.date or as.Date?). It
also makes it more difficult to remember the names
of parameters and functions. Two different functions
can have the same name, where the only difference
is the naming convention used. This is the case with
nrow and NROW where both functions count the rows
of a a data frame, but their behaviors differ slightly.

There exist many different naming conventions
and below is a list of some of the most common.
All are in use in the R community and the exam-
ple names given are all from functions that are part
of the base package. As whitespace cannot be part
of a name, the main difference between the conven-
tions is in how names consisting of multiple words
are written.

alllowercase All letters are lower case and no sep-
arator is used in names consisting of multi-
ple words as in searchpaths or srcfilecopy.
This naming convention is common in MAT-
LAB. Note that a single lowercase name, such
as mean, conforms to all conventions but Up-
perCamelCase.

period.separated All letters are lower case and mul-
tiple words are separated by a period. This
naming convention is unique to R and used
in many core functions such as as.numeric or
read.table.

underscore_separated All letters are lower case and
multiple words are separated by an underscore
as in seq_along or package_version. This nam-
ing convention is used for function and vari-
able names in many languages including C++,
Perl and Ruby.

lowerCamelCase Single word names consist of
lower case letters and in names consist-
ing of more than one word all, except the
first word, are capitalized as in colMeans or
suppressPackageStartupMessage. This nam-
ing convention is used, for example, for
method names in Java and JavaScript.

UpperCamelCase All words are capitalized both
when the name consists of a single word,
as in Vectorize, or multiple words, as in
NextMethod. This naming convention is used
for class names in many languages including
Java, Python and JavaScript.

If you are a newcomer to R or if you are devel-
oping a new package, how should you decide which
naming convention to adopt? While there exist no
official naming conventions there do exist a num-
ber of R style guides that include naming convention
guidelines. Below is a non-exhaustive list of such
guides.

• Bioconductor’s coding standards
http://wiki.fhcrc.org/bioc/Coding_
Standards

• Hadley Wickham’s style guide
http://stat405.had.co.nz/r-style.html

• Google’s R style guide
http://google-styleguide.googlecode.com/
svn/trunk/google-r-style.html

• Colin Gillespie’s R style guide
http://csgillespie.wordpress.com/2010/
11/23/r-style-guide/

Following a style guide will lead to good in-
ternal consistency in your code but you are still
faced with the choice of naming conventions as
there seems to be no consensus between style
guides. The coding standards of the Bioconducor
project recommend that both function and variable
names are written in lowerCamelCase while Hadley
Wickham’s style guide recommends using under-
score_separated names. Google’s R style guide pro-
poses UpperCamelCase for function names and pe-
riod.separated variable names. Colin Gillespie’s R
style guide agrees with Google’s on the the naming
of functions but recommends underscore_separated
variable names.

1 http://cran.r-project.org/doc/manuals/R-ints.html
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Naming conventions on CRAN

One thing to consider when choosing to adopt a
naming convention is what conventions are already
popular in the R community. For example, it is
safe to say that it would be unconventional to re-
lease a package where function names are in all caps
as in old FORTRAN. A good source of informa-
tion regarding the current naming convention prac-
tices of the R community is the Comprehensive R
Archive Network (CRAN). The function and param-
eter names used in CRAN packages should reflect
the names R users are using, as CRAN is arguably
the most common source for add-on packages.

In order to look into this I downloaded the doc-
umentation and the NAMESPACE files for all pack-
ages on CRAN 2. The NAMESPACE files were used
to extract function names and out of the 4108 pack-
ages on CRAN, function names from 2668 packages
were retrieved. The reason why it was not possible
to get function names from all packages is that while
all CRAN packages now include a NAMESPACE file,
not all NAMESPACE files explicitly export function
names. S3 functions were converted not to include
the class name, for example, plot.myclass just be-
came plot. This was done in order to avoid inflating
the number of period.separated function names. The
documentation files were used to pick out the pa-
rameter names for all documented functions in order
to get at what naming conventions are used when
naming variables. In total 62,497 function names and
316,852 parameter names were retrieved.

Figure 1: The percentage of function and parame-
ter names from CRAN that matches the five naming
conventions.

Figure 1 shows the percentage of function and pa-
rameter names that matches the five naming conven-
tions, with lowerCamelCase and period.separated
being the most common conventions. The impres-
sion, however, is that naming convention usage is
quite heterogeneous as all of the five naming con-
ventions seem to be used to some degree. Included
in the figure is also the percentage of names that do
not match any specified naming convention. These
are labeled .OTHER_style. (Examples of such names
would be as.Date and Sys.setlocale). Note that
a name can match many naming conventions, es-
pecially all names that are alllowercase also match

period.separated, underscore_separated and lower-
CamelCase conventions. This explains why the pa-
rameter names match the top four naming conven-
tions to a higher degree than the function names, as
parameter names tend to be single letter words to a
larger degree than function names (the single most
common parameter name being x).

How common is it actually to mix naming con-
ventions in the same package, given that there are
many different naming conventions in use in the
R community? Counting the minimum number of
naming conventions required to cover all function
names in each package on CRAN shows that while
the largest group (43%) of packages stick to using
one naming convention, 28% mix two naming con-
ventions and 28% mix three or more.

Comparing the naming conventions advocated
by the style guides with the situation on CRAN
shows that some of the proposed naming conven-
tions fit less well with the CRAN data. Both Google
and Colin Gillespie propose using UpperCamelCase
for function names, which seems to be far from
the norm as only 7% of the function names on
CRAN conform to this convention. Using under-
score_separated names, as the style guide of Hadley
Wickham proposes, is also relatively rare as com-
pared to using lowerCamelCase or period.separated
names. None of the style guides propose the nam-
ing convention that fits the CRAN data best, that is,
to name functions using lowerCamelCase and vari-
ables using period.separated names. Although a case
can be made for using the same naming convention
for both variables and functions as, strictly speaking,
functions are assigned to variables in R.

Both the CRAN data and the style guides show
that there is no consensus regarding naming conven-
tions in R and this it likely to continue as naming con-
ventions, to a large degree, are a matter of taste and
habit. If one believes that more homogeneous nam-
ing conventions are desirable it is a bit distressing
that an entity as influential as Google issues naming
convention guidelines that are not compatible with
the current usage in the R community. What could
help might be to raise awareness in the R commu-
nity about naming conventions; writers of books and
tutorials on R could make a difference here by treat-
ing naming conventions when introducing the R lan-
guage. What is most important, however, is to keep a
consistent naming convention style within your code
base, whether you are working on a personal project
or developing a package.

Rasmus Bååth
Lund University Cognitive Science
Lund University
Sweden
rasmus.baath@lucs.lu.se

2The files were retrieved from CRAN on 2012-11-13.
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Changes in R
In version 2.15.2

by the R Core Team

CHANGES IN R VERSION 2.15.2

NEW FEATURES

• The X11() window gains an icon: the latter
may be especially useful on Ubuntu’s ‘Unity’
interface.

The WM_CLASS should be set in circumstances
where the Window Manager failed to make use
of X11 resource settings.

(Contributed by Philip Johnson.)

• The "Date" and "POSIXt" methods for cut()
will accept an unsorted breaks argument (as
the default method does, although this was un-
documented). (Wish of PR#14961.)

• Reference class methods (in the methods pack-
age) that use other methods in an indirect way
(e.g. by sapply()) must tell the code analysis to
include that method. They can now do so by
invoking $usingMethods().

• More Polish translations are available: for
the RGui menus and for several recommended
packages.

• Multistratum MANOVA works. In fact, it
seems to have done so for years in spite of the
help page claiming it did not.

• qqline() has new optional arguments
distribution, probs and qtype, following
the example of lattice’s panel.qqmathline().

• The handling of single quotes in the en@quot
pseudo-language has been slightly improved.
Double quotes are no longer converted.

• New functions checkPoFiles() and
checkPoFile() have been added to the
tools package to check for consistency of
format strings in translation files.

• model.matrix(~1,...) now also contains the
same rownames that less trivial formulae pro-
duce. (Wish of PR#14992, changes the output
of several packages.)

• Misuse of rep() on undocumented types of ob-
jects (e.g. calls) is now reported as an error.

• The included LAPACK has been updated to
3.4.1, with some patches from the current SVN
sources. (Inter alia, this resolves PR#14692.)

• file.copy(recursive = TRUE) has some ad-
ditional checks on user error leading to at-
tempted infinite recursion (and on some plat-
forms to crashing R).

• PCRE has been updated to version 8.31, a bug-
fix release.

• The included version of liblzma has been up-
dated to version 5.0.4, a minor bug-fix release.

• New function .bincode(), a ‘bare-bones’ ver-
sion of cut.default(labels = FALSE) for use
in packages with image() methods.

• The HTML manuals now use directional single
quotes.

• maintainer() now converts embedded new
lines to spaces. It no longer gives a non-
obvious error for non-installed packages.

• The X11() device has some protection against
being used with forked processes via package
parallel.

• Setting the environment variable
R_OSX_VALGRIND (to any value) allows R to
be run under valgrind on Mac OS 10.6 and
10.7 (valgrind currently has very limited
support for 10.8), provided system() is not
used (directly or indirectly). This should not
be needed for valgrind >= 3.8.1.

• The "model.frame" method for lm() uses
xlevels: this is safer if data was supplied or
model = FALSE was used and the levels of fac-
tors used in the fit had been re-ordered since
fitting.

Similarly, model.frame(fm,data=<data>)
copies across the variables used for safe
prediction from the fit.

• Functions such as parLapply() in package par-
allel can make use of a default cluster if one is
set. (Reported by Martin Morgan.)

• chol(pivot = TRUE,LINPACK = FALSE) is
now available using LAPACK 3.2 subroutine
DPSTRF.

• The functions .C(), .Call(), .External() and
.Fortran() now check that they are called with
an unnamed first argument: the formal argu-
ments were changed from name= to .NAME= in R
2.13.0, but some packages were still using the
old name. This is currently a warning, but will
be an error in future.

• step() no longer tries to improve a model with
AIC of -Inf (a perfect fit).
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• spline() and splinefun() gain a new method
"hyman", an implementation of Hyman’s
method of constructing monotonic interpola-
tion splines. (Based on contributions of Simon
Wood and Rob Hyndman.)

• On Windows, the C stack size has been in-
creased to 64MB (it has been 10MB since the
days of 32MB RAM systems).

PERFORMANCE IMPROVEMENTS

• array() is now implemented in C code (for
speed) when data is atomic or an unclassed list
(so it is known that as.vector(data) will have
no class to be used by rep()).

• rep() is faster and uses less memory, substan-
tially so in some common cases (e.g. if times is
of length one or length.out is given, and each
= 1).

• findInterval(), tabulate(), cut(), hist()
and image.default() all use .Call() and are
more efficient.

• duplicated(), unique() and similar now sup-
port vectors of lengths above 229 on 64-bit plat-
forms.

• Omitting PACKAGE in .C() etc calls was sup-
posed to make use of the DLL from the names-
pace within which the enclosing function was
defined. It was less successful in doing so
than it might be, and gave no indication it had
failed.

A new search strategy is very successful and
gives a warning when it fails. In most cases this
is because the entry point is not actually pro-
vided by that package (and so PACKAGE should
be used to indicate which package is intended)
but in some the namespace does not have a
DLL specified by a useDynLib() directive so
PACKAGE is required.

UTILITIES

• R CMD check now checks if a package can
be loaded by library(pkgname,lib.loc =
"somewhere") without being on the library
search path (unless it is already installed in
.Library, when it always will be).

• R CMD check --as-cran notes ‘hidden’ files
and directories (with names starting with a dot)
that are not needed for the operation of R CMD
INSTALL or R CMD build: such files should be
excluded from the published tarball.

• R CMD check (if checking subdirectories)
checks that the R code in any demos is ASCII
and can be parsed, and warns if not.

• When R CMD Rd2pdf is used with ‘inputenx.sty’,
it allows further characters (mainly for East-
ern European languages) by including ‘ix-
utf8enc.dfu’ (if available). (Wish of PR#14989.)

• R CMD build now omits several types
of hidden files/directories, including
‘inst/doc/.Rinstignore’, ‘vignettes/.Rinstignore’,
(‘.Rinstignore’ should be at top level), ‘.deps’
under ‘src’, ‘.Renviron’, ‘.Rprofile’, ‘.Rproj.user’,
‘.backups’, ‘.cvsignore’, ‘.cproject’, ‘.directory’,
‘.dropbox’, ‘.exrc’, ‘.gdb.history’, ‘.gitattributes’,
‘.gitignore’, ‘.gitmodules’, ‘.hgignore’, ‘.hgtags’,
‘.htaccess’, ‘.latex2html-init’, ‘.project’, ‘.seed’,
‘.settings’, ‘.tm_properties’ and various leftovers.

• R CMD check now checks for .C(), .Call(),
.External() and .Fortran() calls in other
packages, and gives a warning on those found
from R itself (which are not part of the API and
change without notice: many will be changed
for R 2.16.0).

C-LEVEL FACILITIES

• The limit for R_alloc on 64-bit platforms has
been raised to just under 32GB (from just un-
der 16GB).

• The misuse of .C("name",...,PACKAGE = foo)
where foo is an arbitrary R object is now an er-
ror.

The misuse .C("name",...,PACKAGE = "") is
now warned about in R CMD check, and will be
an error in future.

DEPRECATED AND DEFUNCT

• Use of array() with a 0-length dim argument is
deprecated with a warning (and was contrary
to the documentation).

• Use of tapply() with a 0-length INDEX list is
deprecated with a warning.

• ‘Translation’ packages are deprecated.

• Calling rep() or rep.int() on a pairlist is dep-
recated and will give a warning. In any case,
rep() converted a pairlist to a list so you may
as well do that explicitly.

• Entry point rcont2 is no longer part of the API,
and will move to package stats in R 2.16.0.

• The ‘internal’ graphics device invoked
by .Call("R_GD_nullDevice",package =
"grDevices") is about to be removed: use
pdf(file = NULL) instead.
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• eigen(EISPACK = TRUE), chol(pivot =
FALSE,LINPACK = TRUE), chol2inv(LINPACK
= TRUE), solve(LINPACK = TRUE) and
svd(LINPACK = TRUE) are deprecated and
give a warning.

They were provided for compatibility with R
1.7.0 (Mar 2003)!

• The ‘internal function’ kappa.tri() has been
renamed to .kappa_tri() so it is not inadver-
tently called as a method for class "tri".

• Functions sessionData() and browseAll() in
package methods are on a help page describ-
ing them as ‘deprecated’ and are now formally
deprecated.

PACKAGE INSTALLATION

• For a Windows or Mac OS X binary package in-
stall, install.packages() will check if a source
package is available on the same repositories,
and report if it is a later version or there is a
source package but no binary package avail-
able.

This check can be suppressed: see the help
page.

• install.packages(type = "both") has been
enhanced. In interactive use it will ask whether
to choose the source version of a package if the
binary version is older and contains compiled
code, and also asks if source packages with no
binary version should be installed).

INSTALLATION

• There is a new configure option
‘--with-libtiff’ (mainly in case the sys-
tem installation needs to be avoided).

• LAPACK 3.4.1 does use some Fortran 90 fea-
tures, so g77 no longer suffices.

• If an external LAPACK is used, it must be ver-
sion 3.2 or later.

BUG FIXES

• On Windows, starting Rterm via R.exe caused
Ctrl-C to misbehave. (PR#14948)

• The tools::latexToUtf8() function missed
conversions that were contained within braces.

• Long timezone specifications (such as a file
name preceded by :) could crash as.POSIXlt.
(PR#14945)

• R CMD build --resave-data could fail if there
was no ‘data’ directory but there was an
‘R/sysdata.rda’ file. (PR#14947)

• is.na() misbehaved on a 0-column data frame.
(PR#14959)

• anova.lmlist() failed if test was supplied.
(PR#14960)

It was unable to compute Cp tests for object of
class "lm" (it assumed class "glm").

• The formula method for sunflowerplot() now
allows xlab and ylab to be set. (Reported by
Gerrit Eichner.)

• The "POSIXt" and "Date" methods for hist()
could fail on Windows where adjustments to
the right-hand boundary crossed a DST transi-
tion time.

• On Windows, the code in as.POSIXct() to
handle incorrectly specified isdst fields might
have resulted in NA being returned.

• aov() and manova() gave spurious warnings
about a singular error model in the multire-
sponse case.

• In ns() and bs(), specifying knots = NULL is
now equivalent to omitting it, also when df is
specified. (PR#14970)

• sprintf() did not accept numbered arguments
ending in zero. (PR#14975)

• rWishart() could overflow the C stack and
maybe crash the R process for dimensions
of several hundreds or more. (Reported by
Michael Braun on R-sig-mac.)

• Base package vignettes (e.g.
vignette("Sweave")) were not fully installed
in builds of R from the tarball.

• lchoose() and choose() could overflow the C
stack and crash R.

• When given a 0-byte file and asked to keep
source references, parse() read input from
stdin() instead.

• pdf(compress = TRUE) did not delete tempo-
rary files it created until the end of the R ses-
sion. (PR#14991)

• logLik() did not detect the error of apply-
ing it to a multiple-response linear model.
(PR#15000)

• file.copy(recursive = TRUE) did not always
report FALSE for a failure two or more directo-
ries deep.

• qgeom() could return -1 for extremely small q.
(PR#14967.)
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• smooth.spline() used DUP = FALSE which al-
lowed its compiled C code to change the func-
tion: this was masked by the default byte-
compilation. (PR#14965.)

• In Windows, the GUI preferences for fore-
ground color were not always respected. (Re-
ported by Benjamin Wells.)

• On OS X, the Quartz versions of the bitmap
devices did not respect antialias = "none".
(PR#15006.)

• unique() and similar would infinite-loop if
called on a vector of length > 229 (but reported
that the vector was too long for 230 or more).

• parallel::stopCluster() now works with
MPI clusters without snow being on the search
path.

• terms.formula() could exhaust the stack, and
the stack check did not always catch this before
the segfault. (PR#15013)

• sort.list(method = "radix") could give in-
correct results on certain compilers (seen with
clang on Mac OS 10.7 and Xcode 4.4.1).

• backsolve(T,b) gave incorrect results when
nrows(b) >ncols(T) and b had more than one
column.

It could segfault or give nonsense if k was spec-
ified as more than ncols(T).

• smooth.spline() did not check that a specified
numeric spar was of length 1, and gave corrupt
results if it was of length 0.

• Protection added to do_system. (PR#15025)

• Printing of vectors with names > 1000 charac-
ters now works correctly rather than truncat-
ing. (PR#15028)

• qr() for a complex matrix did not pivot the col-
umn names.

• --with-blas='-framework vecLib' now also
works on OS X 10.8.

• R CMD check no longer fails with an error if a
‘DESCRIPTION’ file incorrectly contains a blank
line. (Reported by Bill Dunlap.)

• install.packages(type = "both") could call
chooseCRANmirror() twice.

• lm.wfit() could segfault in R 2.15.1 if all the
weights were zero. (PR#15044)

• A malformed package name could cause R CMD
INSTALL to write outside the target library.

• Some of the quality control functions (e.g.
tools::checkFF()) were wrongly identifying
the source of S4 methods in a package and so
not checking them.

• The default type of display by browseEnv()
when using R.app on Mac OS X has been in-
correct for a long time.

• The implementation of importMethodsFrom in
a NAMESPACE file could be confused and fail
to find generics when importing from multi-
ple packages (reported and fixed by Michael
Lawrence).

• The detection of the C stack direction is bet-
ter protected against compiler optimization.
(PR#15011.)

• Long custom line types would sometimes
segfault on the cairographics-based devices.
(PR#15055.)

• tools::checkPoFile() unprotected too early
in its C code and so segfaulted from time to
time.

• The Fortran code underlying nlminb() could
infinite-loop if any of the input functions re-
turned NA or NaN. This is now an error for the
gradient or Hessian, and a warning for the
function (with the value replaced by Inf). (In
part, PR#15052.)

• The code for creating coerce() methods could
generate false notes about ambiguous selec-
tion; the notes have been suppressed for this
function.

• arima.sim() could give too long an output in
some corner cases (in part, PR#15068).

• anova.glm() with test = "Rao" didn’t work
when models included an offset. (Reported by
Søren Feodor Nielsen.)

• as.data.frame.matrix() could return invalid
data frame with no row.names attribute for 0-
row matrix. (Reported by Hervé Pagès.)

• Compilation with the vecLib or Accelerate
frameworks on OS X without using that also
for LAPACK is more likely to be successful.
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Changes on CRAN
2012-06-09 to 2012-11-28

by Kurt Hornik and Achim Zeileis

New packages in CRAN task views

Bayesian BVS, Bayesthresh, MISA, bspmma, ggm-
cmc, growcurves, hbsae, pacbpred, rcppbugs,
spTimer.

ChemPhys astroFns, cosmoFns, represent.

ClinicalTrials TrialSize∗, metaLik.

Cluster BayesLCA, HMMmix, Rmixmod∗, long-
clust, pgmm, teigen.

Econometrics AutoSEARCH.

Finance AutoSEARCH, TFX, pa.

HighPerformanceComputing HiPLARM, pbd-
BASE, pbdDMAT, pbdMPI, pbdSLAP.

MachineLearning C50, grpreg.

MedicalImaging mmand∗.

OfficialStatistics IC2.

Optimization CLSOCP, DWD, trustOptim.

Phylogenetics GUniFrac, HMPTrees, PVR, TESS,
geomorph, phylotools, spider.

Psychometrics CopyDetect, lava, lava.tobit, rpf,
semTools, simsem.

SocialSciences BradleyTerry2.

Spatial GriegSmith, OpenStreetMap, ggmap, os-
mar, plotKML, rasterVis, spacetime∗, spatial-
probit.

Survival CR, FHtest, JMLSD, JMbayes, JP-
Surv, NPHMC, SGL, TBSSurvival, TPmsm,
TestSurvRec, bpcp, complex.surv.dat.sim,
compound.Cox, crrstep, fastcox, genSurv,
jmec, joineR, lava.tobit, mets, survIDINRI,
survSNP.

TimeSeries CommonTrend, ForeCA, Peak2Trough,
TSA, WeightedPortTest, astsa, bfast, bi-
wavelet, dlmodeler, x12, x12GUI.

gR QUIC, R2OpenBUGS, lcd, rjags.

(* = core package)

New contributed packages

ACCLMA ACC & LMA Graph Plotting. Authors:
Tal Carmi, Liat Gaziel.

ACD Categorical data analisys with complete or
missing responses. Authors: Frederico Zan-
queta Poleto, Julio da Mota Singer, Daniel Car-
los Paulino, Fabio Mathias Correa and Enio
Galinkin Jelihovschi.

AID Estimate Box-Cox Power Transformation Pa-
rameter. Authors: Osman Dag, Ozgur Asar,
Ozlem Ilk.

AMAP.Seq Compare Gene Expressions from 2-
Treatment RNA-Seq Experiments. Author:
Yaqing Si.

AOfamilies Aranda-Ordaz (AO) transformation
families. Authors: Hakim-Moulay Dehbi (with
contributions from Mario Cortina-Borja and
Marco Geraci).

APSIMBatch Analysis the output of Apsim soft-
ware. Author: Bangyou Zheng.

Actigraphy Actigraphy Data Analysis. Authors:
William Shannon, Tao Li, Hong Xian, Jia Wang,
Elena Deych, Carlos Gonzalez.

ActuDistns Functions for actuarial scientists. Au-
thor: Saralees Nadarajah.

AdequacyModel Adequacy of models. Authors:
Pedro Rafael Diniz Marinho, Cicero Rafael Bar-
ros Dias.

Agreement Statistical Tools for Measuring Agree-
ment. Author: Yue Yu and Lawrence Lin.

AlleleRetain Allele Retention, Inbreeding, and De-
mography. Author: Emily Weiser.

AncestryMapper Ancestry Mapper. Authors: Tiago
Magalhaes, Darren J. Fitzpatrick.

AssetPricing Optimal pricing of assets with fixed
expiry date. Author: Rolf Turner.

AtmRay Acoustic Traveltime Calculations for 1-D
Atmospheric Models. Author: Jake Anderson.

BACprior Sensitivity of the Bayesian Adjustment
for Confounding (BAC) algorithm to the choice
of hyperparameter omega. Author: Denis jf
Talbot.

BADER Bayesian Analysis of Differential Expres-
sion in RNA Sequencing Data. Authors: An-
dreas Neudecker, Matthias Katzfuss.
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BAEssd Bayesian Average Error approach to Sam-
ple Size Determination. Authors: Eric M. Reyes
and Sujit K. Ghosh.

BDgraph Gaussian Graphical Model determination
based on birth-death MCMC methodology.
Authors: Abdolreza Mohammadi and Ernst
Wit.

BGSIMD Block Gibbs Sampler with Incomplete
Multinomial Distribution. Authors: Kwang
Woo Ahn, Kung-Sik Chan.

BTYD Implementing Buy ’Til You Die Models.
Authors: Lukasz Dziurzynski [aut], Edward
Wadsworth [aut], Peter Fader [ctb], Elea Mc-
Donnell Feit [cre, ctb], Bruce Hardie [ctb], Arun
Gopalakrishnan [ctb], Eric Schwartz [ctb], Yao
Zhang [ctb].

BayesFactor Computation of Bayes factors for sim-
ple designs. Authors: Richard D. Morey, Jeffrey
N. Rouder.

BayesNI Bayesian Testing Procedure for Noninferi-
ority with Binary Endpoints. Authors: Sujit K
Ghosh, Muhtarjan Osman.

Bayesthresh Bayesian thresholds mixed-effects
models for categorical data. Authors: Fabio
Mathias Correa and Julio Silvio de Souza
Bueno Filho. In view: Bayesian.

BaylorEdPsych Baylor University Educational Psy-
chology Quantitative Courses. Author: A.
Alexander Beaujean.

Bclim Bayesian Palaeoclimate Reconstruction from
Pollen. Authors: Andrew Parnell, Thinh Doan
and James Sweeney.

BiGGR Creates an interface to BiGG database, pro-
vides a framework for simulation and pro-
duces flux graphs. Author: Anand K. Gavai.

BigTSP Top Scoring Pair based methods for classifi-
cation. Authors: Xiaolin Yang,Han Liu.

Brq Bayesian analysis of quantile regression models.
Author: Rahim Alhamzawi.

C50 C5.0 Decision Trees and Rule-Based Models.
Authors: Max Kuhn, Steve Weston, Nathan
Coulter. C code for C5.0 by R. Quinlan. In
view: MachineLearning.

CARramps Reparameterized and marginalized pos-
terior sampling for conditional autoregressive
models. Authors: Kate Cowles and Stephen
Bonett; with thanks to Juan Cervantes, Dong
Liang, Alex Sawyer, and Michael Seedorff.

CBPS Covariate Balancing Propensity Score. Au-
thors: Marc Ratkovic, Kosuke Imai, Christian
Fong.

CCM Correlation Classification Method. Authors:
Garrett M. Dancik and Yuanbin Ru.

CFL Compensatory Fuzzy Logic. Authors: Pablo
Michel Marin Ortega, Kornelius Rohmeyer.

CGP Composite Gaussian Process models. Authors:
Shan Ba and V. Roshan Joseph.

CHsharp Choi and Hall Clustering in 3d. Author:
Douglas G. Woolford. In view: Cluster.

CMC Cronbach-Mesbah Curve. Authors: Michela
Cameletti and Valeria Caviezel. In view: Psy-
chometrics.

CR Power Calculation for Weighted Log-Rank Tests
in Cure Rate Models. Authors: Emil A. Cornea,
Bahjat F. Qaqish, and Joseph G. Ibrahim. In
view: Survival.

CVST Fast Cross-Validation via Sequential Testing.
Authors: Tammo Krueger, Mikio Braun.

CarbonEL Carbon Event Loop. Author: Simon Ur-
banek.

CensRegMod Fitting Normal and Student-t cen-
sored regression model. Authors: Monique
Bettio Massuia, Larissa Avila Matos and Victor
Lachos.

ChangeAnomalyDetection Change Anomaly De-
tection. Author: Yohei Sato.

CombMSC Combined Model Selection Criteria.
Author: Andrew K. Smith.

CompLognormal Functions for actuarial scientists.
Author: Saralees Nadarajah.

CompareTests Estimate diagnostic accuracy (sensi-
tivity, specificity, etc) and agreement statistics
when one test is conducted on only a subsam-
ple of specimens. Authors: Hormuzd A. Katki
and David W. Edelstein.

CopulaRegression Bivariate Copula Based Regres-
sion Models. Authors: Nicole Kraemer, Daniel
Silvestrini.

CopyDetect Computing Statistical Indices to De-
tect Answer Copying on Multiple-Choice Tests.
Author: Cengiz Zopluoglu. In view: Psycho-
metrics.

CorrBin Nonparametrics with clustered binary
data. Author: Aniko Szabo.

DBKGrad Discrete Beta Kernel Graduation of mor-
tality data. Authors: Angelo Mazza and Anto-
nio Punzo.

DIME Differential Identification using Mixture En-
semble. Authors: Cenny Taslim, with contribu-
tions from Dustin Potter, Abbasali Khalili and
Shili Lin.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=BAEssd
http://cran.r-project.org/package=BDgraph
http://cran.r-project.org/package=BGSIMD
http://cran.r-project.org/package=BTYD
http://cran.r-project.org/package=BayesFactor
http://cran.r-project.org/package=BayesNI
http://cran.r-project.org/package=Bayesthresh
http://CRAN.R-project.org/view=Bayesian
http://cran.r-project.org/package=BaylorEdPsych
http://cran.r-project.org/package=Bclim
http://cran.r-project.org/package=BiGGR
http://cran.r-project.org/package=BigTSP
http://cran.r-project.org/package=Brq
http://cran.r-project.org/package=C50
http://CRAN.R-project.org/view=MachineLearning
http://cran.r-project.org/package=CARramps
http://cran.r-project.org/package=CBPS
http://cran.r-project.org/package=CCM
http://cran.r-project.org/package=CFL
http://cran.r-project.org/package=CGP
http://cran.r-project.org/package=CHsharp
http://CRAN.R-project.org/view=Cluster
http://cran.r-project.org/package=CMC
http://CRAN.R-project.org/view=Psychometrics
http://CRAN.R-project.org/view=Psychometrics
http://cran.r-project.org/package=CR
http://CRAN.R-project.org/view=Survival
http://cran.r-project.org/package=CVST
http://cran.r-project.org/package=CarbonEL
http://cran.r-project.org/package=CensRegMod
http://cran.r-project.org/package=ChangeAnomalyDetection
http://cran.r-project.org/package=CombMSC
http://cran.r-project.org/package=CompLognormal
http://cran.r-project.org/package=CompareTests
http://cran.r-project.org/package=CopulaRegression
http://cran.r-project.org/package=CopyDetect
http://CRAN.R-project.org/view=Psychometrics
http://CRAN.R-project.org/view=Psychometrics
http://cran.r-project.org/package=CorrBin
http://cran.r-project.org/package=DBKGrad
http://cran.r-project.org/package=DIME


82 NEWS AND NOTES

Deducer Author: Ian Fellows with contributions
from others (see documentation).

DeducerSurvival Add Survival Dialogue to De-
ducer. Authors: Matthew Ockendon, Paul
Cool.

DeducerText Deducer GUI for Text Data. Authors:
Alex Rickett and Ian Fellows, with contribu-
tions from Neal Fultz.

DiscreteInverseWeibull Discrete inverse Weibull
distribution. Authors: Alessandro Barbiero,
Riccardo Inchingolo.

DiscriMiner Tools of the Trade for Discriminant
Analysis. Author: Gaston Sanchez.

DivMelt HRM Diversity Assay Analysis Tool. Au-
thors: David Swan with contributions from
Craig A Magaret and Matthew M Cousins.

DnE Distribution and Equation. Authors: Junyao
Chen, Cuiyi He, Yuanrui Wu, Mengqing Sun.

DynClust Non-parametric denoising and clustering
method of noisy images both indexed by time
and space. Authors: Tiffany Lieury, Christophe
Pouzat, Yves Rozenholc.

EBMAforecast Ensemble BMA Forecasting. Au-
thors: Jacob M. Montgomery, Florian Hollen-
bach, and Michael D. Ward.

EBS Exact Bayesian Segmentation. Author: Alice
Cleynen.

EDISON Software for network reconstruction and
changepoint detection. Authors: Frank Don-
delinger, Sophie Lebre.

EDanalysis Gene Enrichment Disequilibrium Anal-
ysis. Author: Yongshuai Jiang.

ENA Ensemble Network Aggregation. Author: Jef-
frey D. Allen.

ETAS Modeling earthquake data using Epidemic
Type Aftershock Sequence model. Authors:
Abdollah Jalilian, based on Fortran code by
Jiancang Zhuang.

EasyABC EasyABC: performing efficient approxi-
mate Bayesian computation sampling schemes.
Authors: Franck Jabot, Thierry Faure, Nicolas
Dumoullin.

EpiContactTrace Epidemiological tool for contact
tracing. Author: Stefan Widgren, Maria Nore-
mark.

ExPD2D Exact Computation of Bivariate Projection
Depth Based on Fortran Code. Authors: Yijun
Zuo, Xiangyang Ye.

ExPosition Exploratory analysis with the singular
value decomposition. Authors: Derek Beaton,
Cherise R. Chin Fatt, Herve Abdi.

FHtest Tests for right and interval-censored survival
data based on the Fleming-Harrington class.
Authors: Ramon Oller, Klaus Langohr. In view:
Survival.

FMStable Finite Moment Stable Distributions. Au-
thor: Geoff Robinson.

FRACTION Numeric number into fraction. Author:
OuYang Ming.

FRCC Fast Regularized Canonical Correlation Anal-
ysis. Author: Raul Cruz-Cano.

FWDselect Selecting variables in regression models.
Authors: Marta Sestelo, Nora M. Villanueva,
Javier Roca-Pardinas.

FactMixtAnalysis Factor Mixture Analysis with co-
variates. Author: Cinzia Viroli.

FinancialInstrument Financial Instrument Model
Infrastructure for R. Authors: Peter Carl, Dirk
Eddelbuettel, Jeffrey Ryan, Joshua Ulrich, Brian
G. Peterson, Garrett See.

FindAllRoots Find all root(s) of the equation and
Find root(s) of the equation by dichotomy.
Author: Bingpei Wu, Jiajun He, Sijie Chen,
Yangyang Liu.

FormalSeries Elementary arithemtic in formal se-
ries rings. Author: Tomasz Zmorzynski.

FourScores A game for two players. Author:
Matthias Speidel.

GA Genetic Algorithms. Author: Luca Scrucca.

GA4Stratification A genetic algorithm approach to
determine stratum boundaries and sample
sizes of each stratum in stratified sampling.
Authors: Sebnem Er, Timur Keskinturk, Char-
lie Daly.

GANPAdata The GANPA Datasets Package. Au-
thors: Zhaoyuan Fang, Weidong Tian and
Hongbin Ji.

GENEAread Reading Binary files. Author: Zhou
Fang.

GISTools Some further GIS capabilities for R. Au-
thors: Chris Brunsdon and Hongyan Chen.

GLDEX Fitting Single and Mixture of Generalised
Lambda Distributions (RS and FMKL) using
Various Methods. Authors: Steve Su, with
contributions from: Diethelm Wuertz, Martin
Maechler and Rmetrics core team members for
low discrepancy algorithm, Juha Karvanen for
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L moments codes, Robert King for gld C codes
and starship codes, Benjamin Dean for correc-
tions and input in ks.gof code and R core team
for histsu function.

GOFSN Goodness-of-fit tests for the family of skew-
normal models. Author: Veronica Paton
Romero.

GPfit Gaussian Process Modeling. Authors: Blake
MacDoanld, Hugh Chipman, Pritam Ranjan.

GWASExactHW Exact Hardy-Weinburg testing for
Genome Wide Association Studies. Author:
Ian Painter.

GeneF Generalized F-statistics. Author: Yinglei Lai.

Giza Constructing panels of population pyramid
plots based on lattice. Author: Erich Striessnig.

HGNChelper Handy functions for working with
HGNC gene symbols and Affymetrix probeset
identifiers. Authors: Levi Waldron and Markus
Riester.

HIBAG HLA Genotype Imputation with Attribute
Bagging. Author: Xiuwen Zheng.

HMMmix HMM with mixture of gaussians as emis-
sion distribution. Authors: Stevenn Volant and
Caroline Berard. In view: Cluster.

HPO.db A set of annotation maps describing the
Human Phenotype Ontology. Author: Yue
Deng.

HPbayes Heligman Pollard mortality model pa-
rameter estimation using Bayesian Melding
with Incremental Mixture Importance Sam-
pling. Author: David J Sharrow.

HW.pval Testing Hardy-Weinberg Equilibrium for
Multiallelic Genes. Author: Shubhodeep
Mukherji.

HandTill2001 Multiple Class Area under ROC
Curve. Authors: Andreas Dominik Cullmann
[aut, cre], Edgar Kublin [ctb].

HiPLARM High Performance Linear Algebra in R.
Authors: Peter Nash and Vendel Szeremi. In
view: HighPerformanceComputing.

Hotelling Hotelling’s T-squared test and variants.
Author: James Curran.

HyPhy Macroevolutionary phylogentic analysis of
species trees and gene trees. Author: Nathaniel
Malachi Hallinan.

HydroMe Estimation of Soil Hydraulic Parameters
from Experimental Data. Author: Christian
Thine Omuto. In view: Environmetrics.

ISDA.R interval symbolic data analysis for R. Au-
thors: Ricardo Jorge de Almeida Queiroz Filho,
Roberta Andrade de Araujo Fagundes.

ImpactIV Identifying Causal Effect for Multi-
Component Intervention Using Instrumental
Variable Method. Author: Peng Ding.

IndependenceTests Nonparametric tests of inde-
pendence between random vectors. Authors:
P Lafaye de Micheaux, M Bilodeau.

InfDim Infine-dimensional model (IDM) to anal-
yse phenotypic variation in growth trajectories.
Authors: Anna Kuparinen, Mats Bjorklund.

Interact Tests for marginal interactions in a 2 class
response model. Authors: Noah Simon and
Robert Tibshirani.

JASPAR R modules for JASPAR databases: a collec-
tion of transcription factor DNA-binding pref-
erences, modeled as matrices. Author: Xiaobei
Zhao.

JGL Performs the Joint Graphical Lasso for sparse
inverse covariance estimation on multiple
classes. Author: Patrick Danaher.

JMbayes Joint Modeling of Longitudinal and Time-
to-Event Data under a Bayesian Approach. Au-
thor: Dimitris Rizopoulos. In view: Survival.

Julia Fractal Image Data Generator. Author:
Mehmet Suzen.

Kpart Spline Fitting. Author: Eric Golinko.

LDdiag Link Function and Distribution Diagnostic
Test for Social Science Researchers. Author:
Yongmei Ni.

LICORS Light Cone Reconstruction of States — Pre-
dictive State Estimation From Spatio-Temporal
Data. Author: Georg M. Goerg.

LIStest Longest Increasing Subsequence Indepen-
dence Test. Authors: Jesus Garcia and Veronica
Andrea Gonzalez Lopez.

LMest Fit Latent Markov models in basic versions.
Author: Francesco Bartolucci.

LN3GV Author: Steve Lund.

LSC Local Statistical Complexity — Automatic Pat-
tern Discovery in Spatio-Temporal Data. Au-
thor: Georg M. Goerg.

LTR Perform LTR analysis on microarray data. Au-
thor: Paul C. Boutros.

Laterality Authors: Borel A., Pouydebat E., Reghem
E.

LifeTables Implement HMD model life table sys-
tem. Authors: David J. Sharrow, GUI by Hana
Sevcikova.
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MATTOOLS Modern Calibration Functions for the
Modern Analog Technique (MAT). Author: M.
Sawada.

MBCluster.Seq Model-Based Clustering for RNA-
seq Data. Author: Yaqing Si.

MBI (M)ultiple-site (B)iodiversity (I)ndices Calcula-
tor. Author: Youhua Chen.

MBmca Nucleic Acid Melting Curve Analysis on
Microbead Surfaces with R. Author: Stefan
Roediger.

MCUSUM Multivariate Cumulative Sum
(MCUSUM) Control Chart. Author: Edgar
Santos Fernandez.

MDSGUI A GUI for interactive MDS in R. Authors:
Andrew Timm and Sugnet Gardner-Lubbe.

MESS Miscellaneous esoteric statistical scripts. Au-
thor: Claus Ekstrom.

MEWMA Multivariate Exponentially Weighted
Moving Average (MEWMA) Control Chart.
Author: Edgar Santos Fernandez.

MExPosition Multi-table ExPosition. Authors:
Cherise R. Chin Fatt, Derek Beaton, Herve
Abdi.

MMS Fixed effects Selection in Linear Mixed Mod-
els. Author: F. Rohart.

MPDiR Data sets and scripts for Modeling Psy-
chophysical Data in R. Authors: Kenneth
Knoblauch and Laurence T. Maloney.

MSQC Multivariate Statistical Quality Control. Au-
thor: Edgar Santos-Fernandez.

MTurkR Access to Amazon Mechanical Turk Re-
quester API via R. Author: Thomas J. Leeper.

MVB Mutivariate Bernoulli log-linear model. Au-
thor: Bin Dai.

MeDiChI MeDiChI ChIP-chip deconvolution li-
brary. Author: David J Reiss.

Metrics Evaluation metrics for machine learning.
Author: Ben Hamner.

MindOnStats Data sets included in Utts and
Heckard’s Mind on Statistics. Author:
Jonathan Godfrey.

Miney Implementation of the Well-Known Game to
Clear Bombs from a Given Field (Matrix). Au-
thor: Roland Rau.

MitISEM Mixture of Student t Distributions using
Importance Sampling and Expectation Maxi-
mization. Authors: N. Basturk, L.F. Hooger-
heide, A. Opschoor, H.K. van Dijk.

MultiChIPmixHMM Author: Caroline Berard.

MultiLCIRT Multidimensional latent class Item Re-
sponse Theory models. Authors: Francesco
Bartolucci, Silvia Bacci, Michela Gnaldi.

NLRoot Searching for the root of equation. Authors:
Zheng Sengui, Lu Xufen, Hou Qiongchen,
Zheng Jianhui.

NMRS NMR Spectroscopy. Author: Jose L.
Izquierdo. In view: ChemPhys.

NPHMC Sample Size Calculation for the Propor-
tional Hazards Cure Model. Authors: Chao
Cai, Songfeng Wang, Wenbin Lu, Jiajia Zhang.
In view: Survival.

NPMPM Tertiary probabilistic model in predictive
microbiology for use in food manufacture. Au-
thor: Nadine Schoene.

NScluster Simulation and Estimation of the
Neyman-Scott Type Spatial Cluster Models.
Authors: The Institute of Statistical Mathemat-
ics, based on the program by Ushio Tanaka.

NonpModelCheck Model Checking and Variable
Selection in Nonparametric Regression. Au-
thor: Adriano Zanin Zambom.

OPE Outer-product emulator. Author: Jonathan
Rougier.

OPI Open Perimetry Interface. Author: Andrew
Turpin.

ORDER2PARENT Estimate parent distributions
with data of several order statistics. Author:
Cheng Chou.

PAS Polygenic Analysis System (PAS). Author:
Zhiqiu Hu; Shizhong Xu; Zhiquan Wang;
Rongcai Yang.

PCS Calculate the probability of correct selection
(PCS). Author: Jason Wilson.

PDSCE Positive definite sparse covariance estima-
tors. Author: Adam J. Rothman.

PF Functions related to prevented fraction. Author:
Dave Siev.

PKI Public Key Infrastucture for R based on the
X.509 standard. Author: Simon Urbanek.

PKmodelFinder Software for Pharmacokinetic
model. Authors: Eun-Kyung Lee, Gyujeong
Noh, Hyeong-Seok Lim.

PLIS Multiplicity control using Pooled LIS statistic.
Author: Zhi Wei, Wenguang Sun.

POET Principal Orthogonal ComplEment Thresh-
olding (POET) method. Authors: Jianqing Fan,
Yuan Liao, Martina Mincheva.
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PPtree Projection pursuit classification tree. Au-
thors: Eun-Kyung Lee, Yoondong Lee.

PRISMA Protocol Inspection and State Machine
Analysis. Authors: Tammo Krueger, Nicole
Kraemer.

PSCN Parent Specific DNA Copy Number Estima-
tion. Authors: Hao Chen, Haipeng Xing, and
Nancy R. Zhang.

PVAClone Population Viability Analysis with Data
Cloning. Authors: Khurram Nadeem, Peter
Solymos.

PVR Computes Phylogenetic eigenVectors Regres-
sion and Phylogentic Signal-Representation
curve (with null and Brownian expectancies).
Authors: Thiago Santos, Jose Alexandre Diniz-
Filho, Thiago Rangel and Luis Mauricio Bini.
In view: Phylogenetics.

Peaks Author: Miroslav Morhac. In view:
ChemPhys.

PenLNM Group l1 penalized logistic normal multi-
nomial (LNM) regression model. Author: Fan
Xia.

PermAlgo Permutational algorithm to simulate sur-
vival data. Authors: Marie-Pierre Sylvestre,
Thad Edens, Todd MacKenzie, Michal Abra-
hamowicz. In view: Survival.

PlayerRatings Dynamic Updating Methods For
Player Ratings Estimation. Authors: Alec
Stephenson and Jeff Sonas.

PopGenKit Useful functions for (batch) file con-
version and data resampling in microsatellite
datasets. Author: Sebastien Rioux Paquette.

PopGenReport PopGen: A simple way to analyse
and visualize population genetic data. Author:
Aaron Adamack, Bernd Gruber.

ProgGUIinR Support package for “Programming
Graphical User Interfaces in R”. Authors:
Michael Lawrence and John Verzani.

QLSpline Author: Steve Lund.

R0 Estimation of R0 and real-time reproduction
number from epidemics. Authors: Pierre-Yves
Boelle, Thomas Obadia.

R1magic Compressive Sampling: Sparse signal re-
covery utilities. Author: Mehmet Suzen.

R2MLwiN Running MLwiN from within R. Au-
thors: Zhengzheng Zhang, Chris Charl-
ton, Richard Parker, George Leckie, William
Browne.

RAMpath Authors: Zhiyong Zhang, Jack McArdle,
Aki Hamagami, & Kevin Grimm.

RAppArmor Author: Jeroen Ooms.

RAtmosphere Standard Atmosperic profiles. Au-
thor: Gionata Biavati.

RDF RDF reading and writing. Author: Willem
Robert van Hage.

REPPlab R interface to EPP-lab, a Java program
for exploratory projection pursuit. Authors:
Daniel Fischer, Alain Berro, Klaus Nordhausen,
Anne Ruiz-Gazen.

RGCCA Regularized Generalized Canonical Corre-
lation Analysis. Author: Arthur Tenenhaus.

RHT Regularized Hotelling’s T-square Test for Path-
way (Gene Set) Analysis. Authors: Lin S. Chen
and Pei Wang.

ROCwoGS Non-parametric estimation of ROC
curves without Gold Standard Test. Author:
Chong Wang.

RPCLR RPCLR (Random-Penalized Conditional
Logistic Regression). Author: Raji Balasub-
ramanian.

RSclient Client for Rserve. Author: Simon Urbanek.

RTriangle A 2D Quality Mesh Generator and De-
launay Triangulator. Authors: Jonathan
Shewchuk, David C. Sterratt.

RVideoPoker Play Video Poker with R. Authors:
Roland Rau; cards were created by Byron
Knoll.

RVtests Rare Variant Tests Using Multiple Regres-
sion Methods. Authors: C. Xu, C. M. Green-
wood.

RandForestGUI Authors: Rory Michelland,
Genevieve Grundmann.

Rarity Calculation of rarity indices for species and
assemblages of species. Author: Boris Leroy.

Rchemcpp R interface for the ChemCpp library. Au-
thors: Michael Mahr, Guenter Klambauer.

RcmdrPlugin.EACSPIR Plugin de R-Commander
para el manual EACSPIR. Authors: Maribel
Peró, David Leiva, Joan Guàrdia, Antonio
Solanas.

RcmdrPlugin.MPAStats R Commander Plug-in for
MPA Statistics. Author: Andrew Heiss.

RcmdrPlugin.PT Some discrete exponential disper-
sion models: Poisson-Tweedie. Authors:
David Pechel Cactcha, Laure Pauline Fotso and
Celestin C Kokonendji.
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RcmdrPlugin.SLC SLC Rcmdr Plug-in. Authors:
Antonio Solanas, Rumen Manolov.

RcmdrPlugin.StatisticalURV Statistical URV
Rcmdr Plug-In. Author: Daniela Vicente.

RcmdrPlugin.TextMining R commander plugin for
tm package. Author: Dzemil Lusija. In view:
NaturalLanguageProcessing.

RcmdrPlugin.coin Rcmdr coin Plug-In. Author:
Daniel-Corneliu Leucuta.

RcmdrPlugin.depthTools R commander Depth
Tools Plug-In. Authors: Sara Lopez-Pintado
and Aurora Torrente.

RcppCNPy Rcpp bindings for NumPy files. Author:
Dirk Eddelbuettel.

RcppOctave Seamless Interface to Octave and Mat-
lab. Author: Renaud Gaujoux.

Rdpack Update and manipulate Rd documentation
objects. Author: Georgi N. Boshnakov.

Rearrangement Monotonize point and interval
functional estimates by rearrangement. Au-
thors: Wesley Graybill, Mingli Chen, Victor
Chernozhukov, Ivan Fernandez-Val, Alfred
Galichon.

Records Record Values and Record Times. Author:
Magdalena Chrapek.

ReliabilityTheory Tools for structural reliability
analysis. Author: Louis Aslett.

Ridit Ridit Analysis (An extension of the Kruskal-
Wallis Test.). Author: SeyedMahmood Taghav-
iShahri.

Rivivc In vitro in vivo correlation linear level A. Au-
thors: Aleksander Mendyk, Sebastian Polak.

Rsundials Suite of Nonlinear Differential Algebraic
Equations Solvers in R. Author: Selwyn-Lloyd
McPherson.

Rttf2pt1 Package for ttf2pt1 program. Authors:
Winston Chang, Andrew Weeks, Frank M.
Siegert, Mark Heath, Thomas Henlick, Sergey
Babkin, Turgut Uyar, Rihardas Hepas, Szalay
Tamas, Johan Vromans, Petr Titera, Lei Wang,
Chen Xiangyang, Zvezdan Petkovic, Rigel, I.
Lee Hetherington.

Rvelslant Downhole Seismic Analysis in R. Au-
thors: Original method by Dave Boore, R port
and some additions by Eric M. Thompson.

SAM Sparse Additive Machine. Authors: Tuo
Zhao, Xingguo Li, Han Liu, Lie Wang, Kathryn
Roeder.

SECP Statistical Estimation of Cluster Parameters
(SECP). Author: Pavel V. Moskalev.

SEERaBomb SEER Setup and Use with A-Bomb
Data. Author: Tomas Radivoyevitch.

SMR Studentized Midrange Distribution. Authors:
Ben Deivide de Oliveira Batista, Daniel Furtado
Ferreira.

STARSEQ Secondary Trait Association analysis for
Rare variants via SEQuence data. Author: Da-
jiang Liu.

SWATmodel A multi-OS implementation of the
TAMU SWAT model. Authors: Fuka, DR, Wal-
ter, MT, and Easton, ZM.

ScreenClean Screen and clean variable selection
procedures. Authors: Pengsheng Ji, Jiashun
Jin, Qi Zhang.

Segmentor3IsBack A Fast Segmentation Algorithm.
Authors: Alice Cleynen, Guillem Rigaill,
Michel Koskas.

Sejong KoNLP static dictionaries and Sejong project
resources. Author: Heewon Jeon.

SensitivityCaseControl Sensitivity Analysis for
Case-Control Studies. Author: Dylan Small.

SeqGrapheR Simple GUI for graph based visualiza-
tion of cluster of DNA sequence reads. Author:
Petr Novak.

SimCorMultRes Simulates Correlated Multinomial
Responses. Author: Anestis Touloumis.

Simpsons Detecting Simpson’s Paradox. Author:
Rogier Kievit, Sacha Epskamp.

SimultAnR Correspondence and Simultaneous
Analysis. Authors: Amaya Zarraga, Beatriz
Goitisolo.

Sleuth3 Data sets from Ramsey and Schafer’s “Sta-
tistical Sleuth (3rd ed)”. Authors: Original
by F.L. Ramsey and D.W. Schafer, modifica-
tions by Daniel W. Schafer, Jeannie Sifneos and
Berwin A. Turlach.

SmarterPoland A set of tools developed by the
Foundation SmarterPoland.pl. Author: Prze-
myslaw Biecek.

SpatialPack Analysis of spatial data. Authors: Fe-
lipe Osorio, Ronny Vallejos, and Francisco
Cuevas.

Stem Spatio-temporal models in R. Author: Michela
Cameletti. In view: Spatial.

StressStrength Computation and estimation of re-
liability of stress-strength models. Authors:
Alessandro Barbiero, Riccardo Inchingolo.
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TAHMMAnnot Mixture model approach to com-
pare two samples of Tiling Array data. Author:
Caroline Berard.

TANOVA Time Course Analysis of Variance for Mi-
croarray. Authors: Baiyu Zhou and Weihong
Xu.

TBSSurvival TBS Model R package. Authors: Adri-
ano Polpo, Cassio de Campos, D. Sinha, Stuart
Lipsitz, Jianchang Lin. In view: Survival.

TERAplusB Test for A+B Traditional Escalation
Rule. Author: Eun-Kyung Lee.

TESS Fast simulation of reconstructed phylogenetic
trees under time-dependent birth-death pro-
cesses. Author: Sebastian Hoehna. In view:
Phylogenetics.

TExPosition Two-table ExPosition. Authors: Derek
Beaton, Jenny Rieck, Cherise R. Chin Fatt,
Herve Abdi.

TFX R API to TrueFX(tm). Author: Garrett See. In
view: Finance.

TPmsm Estimation of transitions probabilities in
multistate models. Authors: Artur Agostinho
Araujo, Javier Roca-Pardinas and Luis Meira-
Machado. In view: Survival.

TRIANGG General discrete triangular distribution.
Authors: Tristan Senga Kiessé, Francial G.
Libengué, Silvio S. Zocchi, Célestin C. Koko-
nendji.

TSEN Two-dimensional peak sentinel tool for GC x
GC-HRTOFMS. Author: Yasuyuki Zushi.

TSPC Prediction using time-course gene expression.
Author: Yuping Zhang.

TScompare TSdbi Comparison. Author: Paul
Gilbert.

TSdata TSdbi Illustration. Author: Paul Gilbert.

ThreeWay Three-way component analysis. Au-
thors: Maria Antonietta Del Ferraro, Henk A.L.
Kiers, Paolo Giordani.

TrialSize Author: Ed Zhang. In view: ClinicalTrials.

Tsphere Transposable Sphering for Large-Scale In-
ference with Correlated Data. Author: Genev-
era I. Allen.

TukeyC Conventional Tukey Test. Authors: Jose
Claudio Faria, Enio Jelihovschi and Ivan Bez-
erra Allaman.

TwoCop Nonparametric test of equality between
two copulas. Authors: Bruno Remillard and
Jean-Francois Plante.

UScensus2000blkgrp US Census 2000 Block Group
Shapefiles and Additional Demographic Data.
Author: Zack W. Almquist. In view: Spatial.

VBMA4hmm Variational Bayesian Markov Model
for hidden markov model. Author: Stevenn
Volant.

VDA Authors: Edward Grant, Xia Li, Kenneth
Lange, Tong Tong Wu.

VIM Visualization and Imputation of Missing Val-
ues. Authors: Matthias Templ, Andreas Al-
fons, Alexander Kowarik, Bernd Prantner. In
views: Multivariate, OfficialStatistics.

VineCopula Statistical inference of vine copulas.
Authors: Ulf Schepsmeier, Jakob Stoeber, Eike
Christian Brechmann.

VizCompX Visualisation of Computer Models. Au-
thor: Neil Diamond.

W2CWM2C A set of functions to produce new
graphical tools for wavelet correlation (bivari-
ate and multivariate cases) using some routines
from the waveslim and wavemulcor packages.
Author: Josue Moises Polanco-Martinez.

WCQ Detection of QTL effects in a small mapping
population. Author: Jan Michael Yap.

WMDB Discriminant Analysis Methods by Weight
Mahalanobis Distance and bayes. Author:
Bingpei Wu.

WaveCD Wavelet change point detection for array
CGH data. Author: M. Shahidul Islam.

WaveletCo Wavelet Coherence Analysis. Author:
Huidong Tian; Bernard Cazelles.

ZeligChoice Zelig Choice Models. Authors: Matt
Owen, Kosuke Imai, Olivia Lau and Gary King.

ZeligGAM Genereal Additive Models for Zelig.
Authors: Matthew Owen, Skyler Cranmer,
Olivia Lau, Kosuke Imai and Gary King.

ZeligMultilevel Multilevel Regressions for Zelig.
Authors: Matthew Owen, Ferdinand Ali-
madhi, Delia Bailey.

adaptsmoFMRI Adaptive Smoothing of FMRI Data.
Author: Max Hughes.

afex Analysis of Factorial Experiments. Author:
Henrik Singmann.

aftgee Accelerated Failure Time Model with Gener-
alized Estimating Equations. Authors: Sy Han
(Steven) Chiou, Sangwook Kang, Jun Yan.

agRee Various Methods for Measuring Agreement.
Author: Dai Feng.
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ageprior Prior distributions for molecular dating.
Author: Michael Matschiner.

aggrisk Estimate individual level risk using indi-
vidual case data and spatially aggregated con-
trol data. Authors: Michelle Stanton, Yongtao
Guan.

allanvar Allan Variance Analysis. Author: Javier
Hidalgo Carrio.

amen Additive and multiplicative effects modeling
of networks and relational data. Authors: Pe-
ter Hoff, Bailey Fosdick, Alex Volfovsky, Kate
Stovel.

anaglyph 3D Anaglyph Plots. Author: Jonathan
Lee.

andrews Andrews curves. Author: Jaroslav Mys-
livec.

antitrust Authors: Michael Sandfort and Charles
Taragin.

aqr Interface methods to access use an ActiveQuant
Master Server. Author: Ulrich Staudinger.

asd Simulations for adaptive seamless designs. Au-
thor: Nick parsons. In views: ClinicalTrials, Ex-
perimentalDesign.

astroFns Miscellaneous astronomy functions, utili-
ties, and data. Author: Andrew Harris. In
view: ChemPhys.

astsa Applied Statistical Time Series Analysis. Au-
thor: David Stoffer. In view: TimeSeries.

attfad Evaluation and comparison of expression
data and GRNs. Author: Robert Maier.

audit Bounds for Accounting Populations. Author:
Glen Meeden.

autopls pls regression with backward selection of
predictors. Authors: Sebastian Schmidtlein,
with contributions from Carsten Oldenburg
and Hannes Feilhauer.

bReeze Functions for wind resource assessment.
Authors: Christian Graul and Carsten Pop-
pinga.

base64enc Tools for base64 encoding. Author: Si-
mon Urbanek.

batade HTML reports and so on. Author: Ichikawa
Daisuke.

batchmeans Consistent Batch Means Estimation of
Monte Carlo Standard Errors. Authors: Murali
Haran and John Hughes.

bayesGDS Functions to implement Generalized Di-
rect Sampling. Author: Michael Braun.

bayespref Hierarchical Bayesian analysis of ecolog-
ical count data. Authors: Zachariah Gompert
and James A. Fordyce.

bc3net Authors: Ricardo de Matos Simoes and
Frank Emmert-Streib.

bdpv Inference and design for predictive values
in binary diagnostic tests. Author: Frank
Schaarschmidt.

beadarrayFilter Bead filtering for Illumina bead ar-
rays. Authors: Anyiawung Chiara Forcheh,
Geert Verbeke, Adetayo Kasim, Dan Lin,
Ziv Shkedy, Willem Talloen, Hinrich WH
Gohlmann, Lieven Clement.

betafam Detecting rare variants for quantitative
traits using nuclear families. Author: Wei Guo.

biasbetareg Bias correction of the parameter esti-
mates of the beta regression model. Author:
Luana Cecilia Meireles.

bigmemory.sri A shared resource interface for Big-
memory Project packages. Author: Michael J.
Kane.

bimetallic Power for SNP analyses using silver stan-
dard cases. Author: Andrew McDavid.

binhf Haar-Fisz functions for binomial data. Au-
thor: Matt Nunes.

binomialcftp Generates binomial random numbers
via the coupling from the past algorithm. Au-
thor: Francisco Juretig.

binseqtest Exact Binary Sequential Designs and
Analysis. Authors: Jenn Kirk, Mike Fay.

biomod2 Ensemble platform for species distribution
modeling. Authors: Wilfried Thuiller, Damien
Georges and Robin Engler.

bise Auxiliary functions for phenological data anal-
ysis. Author: Daniel Doktor.

biseVec Auxiliary functions for phenological data
analysis. Author: Maximilian Lange.

bisoreg Bayesian Isotonic Regression with Bernstein
Polynomials. Author: S. McKay Curtis. In
view: Bayesian.

bivarRIpower Sample size calculations for bivariate
longitudinal data. Authors: W. Scott Comulada
and Robert E. Weiss.

biwt Functions to compute the biweight mean vec-
tor and covariance & correlation matrices. Au-
thor: Jo Hardin.
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blockcluster Co-Clustering for Binary, Contingency
and Continuous data-sets. Authors: Parmeet
Bhatia, Serge Iovleff and Gerard Goavert, with
contributions from Christophe Biernacki and
Gilles Celeux.

bmk MCMC diagnostics. Authors: Matthew
Krachey and Edward L. Boone.

boostSeq Optimized GWAS cohort subset selection
for resequencing studies. Author: Milan Hier-
sche.

bootES Bootstrap Effect Sizes. Authors: Daniel Ger-
lanc and Kris Kirby.

bootfs Use multiple feature selection algorithms to
derive robust feature sets for two class classifi-
cation problems. Author: Christian Bender.

bpcp Beta Product Confidence Procedure for Right
Censored Data. Author: Michael Fay. In view:
Survival.

breakage SICM pipette tip geometry estimation.
Author: Matthew Caldwell.

broman Karl Broman’s R code. Author: Karl W Bro-
man.

bspmma Bayesian Semiparametric Models for
Meta-Analysis. Author: Deborah Burr. In
view: Bayesian.

bursts Markov model for bursty behavior in
streams. Author: Jeff Binder.

bvenn A Simple alternative to proportional Venn di-
agrams. Author: Raivo Kolde.

cancerTiming Estimation of temporal ordering of
cancer abnormalities. Author: Elizabeth Pur-
dom.

capme Covariate Adjusted Precision Matrix Estima-
tion. Authors: T. Tony Cai, Hongzhe Li, Wei-
dong Liu and Jichun Xie.

capwire Estimates population size from non-
invasive sampling. Authors: Matthew W. Pen-
nell and Craig R. Miller.

carcass Estimation of the number of fatalities from
carcass searches. Authors: Fraenzi Korner-
Nievergelt, Ivo Niermann, Oliver Behr, Robert
Brinkmann, Pius Korner, Barbara Hellriegel,
Manuela Huso.

caspar Clustered and sparse regression (CaSpaR).
Author: Daniel Percival.

catIrt Simulating IRT-Based Computerized Adap-
tive Tests. Author: Steven W. Nydick.

ccChooser Developing core collections. Authors:
Marcin Studnicki and Konrad Debski.

ccaPP (Robust) canonical correlation analysis via
projection pursuit. Authors: Andreas Alfons
[aut, cre], David Simcha [ctb].

cggd Continuous Generalized Gradient Descent.
Authors: Cun-Hui Zhang and Ofer Melnik.

charlson Converts listwise icd9 data into comorbid-
ity count and Charlson Index. Author: Vanessa
Cox.

cheb Discrete Linear Chebyshev Approximation.
Author: Jan de Leeuw.

cheddar Analysis and visualisation of ecological
communities. Authors: Lawrence Hudson
with contributions from Dan Reuman and Rob
Emerson.

chords Estimation in respondent driven samples.
Author: Jonathan Rosenblatt.

classify Classification Accuracy and Consistency
under IRT models. Authors: Dr Chris
Wheadon and Dr Ian Stockford.

clusterCrit Clustering Indices. Author: Bernard
Desgraupes.

clustergas A hierarchical clustering method based
on genetic algorithms. Authors: Jose A.
Castellanos-Garzon, Fernando Diaz.

clusteval Evaluation of Clustering Algorithms. Au-
thor: John A. Ramey.

clusthaplo Authors: Damien Leroux, Brigitte Man-
gin, Sylvain Jasson, Abdelaziz Rahmani.

coalescentMCMC MCMC Algorithms for the Coa-
lescent. Author: Emmanuel Paradis.

cocron Statistical comparisons of two or more alpha
coefficients. Author: Birk Diedenhofen.

coenoflex Gradient-Based Coenospace Vegetation
Simulator. Author: David W. Roberts.

coexist Species coexistence modeling and analysis.
Author: Youhua Chen.

colcor Tests for column correlation in the presence
of row correlation. Author: Omkar Muralidha-
ran.

colortools Tools for colors in an HSV color model.
Author: Gaston Sanchez.

commandr Command pattern in R. Author: Michael
Lawrence.

comorbidities Categorizes ICD-9-CM codes based
on published comorbidity indices. Author:
Paul Gerrard.

compareODM Comparison of medical forms in
CDISC ODM format. Author: Martin Dugas.
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compoisson Conway-Maxwell-Poisson Distribu-
tion. Author: Jeffrey Dunn. In view: Distri-
butions.

conics Plot Conics. Author: Bernard Desgraupes.

cosmoFns Functions for cosmological distances,
times, luminosities, etc. Author: Andrew Har-
ris. In view: ChemPhys.

cotrend Consistant Cotrend Rank Selection. Author:
A. Christian Silva.

csSAM Cell-specific Significance Analysis of Mi-
croarrays. Authors: Shai Shen-Orr, Rob Tib-
shirani, Narasimhan Balasubramanian, David
Wang.

cudia CUDIA Cross-level Imputation. Authors: Yu-
bin Park and Joydeep Ghosh.

cvq2 Calculate the predictive squared correlation
coefficient. Author: Torsten Thalheim.

cxxfunplus extend cxxfunction by saving the dy-
namic shared objects. Author: Jiqiang Guo.

daewr Design and Analysis of Experiments with R.
Author: John Lawson.

datamart Unified access to various data sources.
Author: Karsten Weinert.

datamerge Merging of overlapping and inconsistent
data. Author: Christofer Backlin.

dbConnect Provides a graphical user interface to
connect with databases that use MySQL. Au-
thors: Dason Kurkiewicz, Heike Hofmann, Ul-
rike Genschel.

dbmss Distance-based measures of spatial struc-
tures. Authors: Eric Marcon, Gabriel Lang,
Stephane Traissac, Florence Puech.

deamer Deconvolution density estimation with
adaptive methods for a variable prone to mea-
surement error. Authors: Julien Stirnemann,
Adeline Samson, Fabienne Comte. Contribu-
tion from Claire Lacour.

degenes Detection of differentially expressed genes.
Author: Klaus Jung.

depthTools Depth Tools. Authors: Sara Lopez-
Pintado and Aurora Torrente.

dglars Differential Geometric LARS (dgLARS)
method. Author: Luigi Augugliaro.

dgof Discrete Goodness-of-Fit Tests. Authors: Tay-
lor B. Arnold, John W. Emerson, R Core Team
and contributors worldwide.

dinamic DiNAMIC A Method To Analyze Recur-
rent DNA Copy Number Aberrations in Tu-
mors. Authors: Vonn Walter, Andrew B. Nobel,
and Fred A. Wright.

distfree.cr Distribution-free confidence region (dist-
free.cr). Authors: Zhiqiu Hu, Rong-cai Yang.

divagis Provides tools for quality checks of georef-
erenced plant species accessions. Author: Rein-
hard Simon.

diveRsity Genetic diversity partition statistics and
Informative locus selection using Fst, Gst,
Dest(Jost Chao) G’st and In. Author: Kevin
Keenan.

dna Differential Network Analysis. Authors: Ryan
Gill, Somnath Datta, Susmita Datta.

downloader Downloading files over https. Author:
Winston Chang.

dpa Dynamic Path Approach. Author: Emile Chap-
pin.

dpglasso Primal Graphical Lasso. Authors: Rahul
Mazumder and Trevor Hastie.

drawExpression Visualising R syntax through
graphics. Author: Sylvain Loiseau.

ds Descriptive Statistics. Author: Emmanuel Arn-
hold.

dsample Discretization-based Direct Random Sam-
ple Generation. Authors: Liqun Wang and
Chel Hee Lee.

dsm Density surface modelling (dsm) of distance
sampling data. Authors: David L. Miller,
Eric Rexstad, Louise Burt, Mark V. Bravington,
Sharon Hedley.

dynCorr Dynamic Correlation. Authors: Joel Du-
bin, Dandi Qiao, Hans-Georg Mueller.

easi EASI Demand System Estimation. Au-
thors: Stephane Hoareau, Guy Lacroix, Mirella
Hoareau, Luca Tiberti.

easyanova Analysis of variance and other important
complementary analyzes. Author: Emmanuel
Arnhold.

edesign Maximum entropy sampling. Author:
Claudia Gebhardt.

eeptools Convenience functions for education data.
Author: Jared E. Knowles.

eigeninv Generates (dense) matrices that have a
given set of eigenvalues. Authors: Ravi Varad-
han, Johns Hopkins University.

el.convex Empirical likelihood ratio tests for means.
Authors: Dan Yang, Dylan Small.
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elmNN Implementation of ELM (Extreme Learning
Machine) algorithm for SLFN (Single Hidden
Layer Feedforward Neural Networks). Author:
Alberto Gosso.

emudata Datasets for the emu package. Au-
thors: Jonathan Harrington, Tina John (pack-
age build) and others.

enaR Tools ecological network analysis (ena). Au-
thors: M.K. Lau, S.R. Borrett, D.E. Hines.

epr Easy polynomial regression. Author: Em-
manuel Arnhold.

evora Epigenetic Variable Outliers for Risk predic-
tion Analysis. Author: Andrew E Teschen-
dorff.

expoRkit Expokit in R. Authors: Roger B. Sidje,
Niels Richard Hansen.

extraTrees ExtraTrees method. Author: Jaak Simm.

extrafont Tools for using fonts. Author: Winston
Chang.

extrafontdb Database for the extrafont package.
Author: Winston Chang.

ezglm Selects significant non-additive interaction
between two variables using fast GLM imple-
mentation. Author: Yi Yang.

fanplot Visualisations of sequential probability dis-
tributions. Author: Guy J. Abel.

fastSOM Fast Calculation of Spillover Measures.
Authors: Stefan Kloessner, Sven Wagner.

fdasrvf Elastic Functional Data Analysis. Author: J.
Derek Tucker.

fdrci Permutation-based FDR Point and Confidence
Interval Estimation. Author: Joshua Millstein.

finebalance Approximate fine balance when exact
fine balance is not achievable. Author: Dan
Yang.

fitDRC Fitting Density Ratio Classes. Authors: Si-
mon L. Rinderknecht and Peter Reichert.

flare Family of Lasso Regression. Authors: Xingguo
Li, Tuo Zhao, Lie Wang, Xiaoming Yuan and
Han Liu.

flubase Baseline of mortality free of influenza epi-
demics. Authors: Nunes B, Natario I and Car-
valho L.

fma Data sets from “Forecasting: methods and
applications” by Makridakis, Wheelwright &
Hyndman (1998). Author: Rob J Hyndman. In
views: Econometrics, TimeSeries.

fmt Variance estimation of FMT method (Fully
Moderated t-statistic). Authors: Lianbo Yu,
The Ohio State University.

fontcm Computer Modern font for use with extra-
font package. Authors: Winston Chang, Alexej
Kryukov, Paul Murrell.

forensic Statistical Methods in Forensic Genetics.
Author: Miriam Marusiakova.

fpow Computing the noncentrality parameter of the
noncentral F distribution. Author: Ali Baharev.

frbs Fuzzy rule-based systems. Authors: Lala
Septem Riza, Christoph Bergmeir, Francisco
Herrera Triguero, and Jose Manuel Benitez.

freeknotsplines Free-Knot Splines. Authors: Steven
Spiriti, Philip Smith, Pierre Lecuyer.

frontiles Partial frontier efficiency analysis. Au-
thors: Abdelaati Daouia, Thibault Laurent.

frt Full Randomization Test. Authors: Giangiacomo
Bravo, Lucia Tamburino.

fugeR FUzzy GEnetic, a machine learning algorithm
to construct prediction model based on fuzzy
logic. Author: Alexandre Bujard.

fwi.fbp Fire Weather Index System and Fire Be-
haviour Prediction System Calculations. Au-
thors: Xianli Wang, Alan Cantin, Marc-Andre
Parisien, Mike Wotton, Kerry Anderson, and
Mike Flannigan.

gMWT Generalized Mann-Whitney Type Tests. Au-
thors: Daniel Fischer, Hannu Oja.

gProfileR g:ProfileR. Authors: Juri Reimand, Raivo
Kolde, Tambet Arak.

gamclass Functions and data for a course on mod-
ern regression and classification. Author: John
Maindonald.

gamlss Generalized Additive Models for Location
Scale and Shape. Authors: Mikis Stasinopou-
los, Bob Rigby with contributions from Cal-
liope Akantziliotou and Vlasis Voudouris. In
view: Econometrics.

gbs Generalized Birnbaum-Saunders Distributions.
Authors: Michelli Barros, Victor Leiva and
Gilberto A. Paula. In view: Distributions.

gdimap Generalized Diffusion Magnetic Resonance
Imaging. Author: Adelino Ferreira da Silva.

gearman R interface to the Gearman Job Server. Au-
thor: Jeffrey Horner.

geeM Fit Generalized Estimating Equations. Au-
thors: Lee McDaniel and Nick Henderson.

gemtc GeMTC network meta-analysis. Authors:
Gert van Valkenhoef, Joel Kuiper.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://cran.r-project.org/package=elmNN
http://cran.r-project.org/package=emudata
http://cran.r-project.org/package=emu
http://cran.r-project.org/package=enaR
http://cran.r-project.org/package=epr
http://cran.r-project.org/package=evora
http://cran.r-project.org/package=expoRkit
http://cran.r-project.org/package=extraTrees
http://cran.r-project.org/package=extrafont
http://cran.r-project.org/package=extrafontdb
http://cran.r-project.org/package=extrafont
http://cran.r-project.org/package=ezglm
http://cran.r-project.org/package=fanplot
http://cran.r-project.org/package=fastSOM
http://cran.r-project.org/package=fdasrvf
http://cran.r-project.org/package=fdrci
http://cran.r-project.org/package=finebalance
http://cran.r-project.org/package=fitDRC
http://cran.r-project.org/package=flare
http://cran.r-project.org/package=flubase
http://cran.r-project.org/package=fma
http://CRAN.R-project.org/view=Econometrics
http://CRAN.R-project.org/view=TimeSeries
http://cran.r-project.org/package=fmt
http://cran.r-project.org/package=fontcm
http://cran.r-project.org/package=extrafont
http://cran.r-project.org/package=extrafont
http://cran.r-project.org/package=forensic
http://cran.r-project.org/package=fpow
http://cran.r-project.org/package=frbs
http://cran.r-project.org/package=freeknotsplines
http://cran.r-project.org/package=frontiles
http://cran.r-project.org/package=frt
http://cran.r-project.org/package=fugeR
http://cran.r-project.org/package=fwi.fbp
http://cran.r-project.org/package=gMWT
http://cran.r-project.org/package=gProfileR
http://cran.r-project.org/package=gamclass
http://cran.r-project.org/package=gamlss
http://CRAN.R-project.org/view=Econometrics
http://cran.r-project.org/package=gbs
http://CRAN.R-project.org/view=Distributions
http://cran.r-project.org/package=gdimap
http://cran.r-project.org/package=gearman
http://cran.r-project.org/package=geeM
http://cran.r-project.org/package=gemtc


92 NEWS AND NOTES

gemtc.jar GeMTC Java binary. Authors: Gert van
Valkenhoef, Joel Kuiper.

genSurv Generating multi-state survival data. Au-
thors: Artur Agostinho Araújo, Luís Meira-
Machado and Susana Faria. In view: Survival.

geneListPie Profiling a gene list into GOslim or
KEGG function pie. Author: Xutao Deng.

geneSignatureFinder A Gene-signatures finder
tools. Authors: Stefano M. Pagnotta, Michele
Ceccarelli.

genlasso Path algorithm for generalized lasso prob-
lems. Authors: Ryan J. Tibshirani, Taylor B.
Arnold.

genomatic Manages microsatellite projects. Creates
96-well maps, genotyping submission forms,
rerun management, and import into statistical
software. Author: Brian J. Knaus.

geomorph Geometric morphometric analysis of
2d/3d landmark data. Authors: Dean Adams,
Erik Otarola-Castillo. In view: Phylogenetics.

geotopbricks Analyzes raster maps as input/output
files from the Hydrological Distributed Model
GEOtop. Authors: Emanuele Cordano,
Daniele Andreis, Fabio Zottele.

ggmcmc Graphical tools for analyzing Markov
Chain Monte Carlo simulations from Bayesian
inference. Author: Xavier Fernández i Marín.
In view: Bayesian.

ggparallel Variations of Parallel Coordinate Plots
for Categorical Data. Authors: Heike Hof-
mann, Marie Vendettuoli.

ggsubplot Explore complex data by embedding
subplots within plots. Authors: Garrett Grole-
mund, Hadley Wickham.

globalboosttest Testing the additional predictive
value of high-dimensional data. Authors:
Anne-Laure Boulesteix, Torsten Hothorn. In
view: Survival.

gnmf Generalized Non-negative Matrix Factoriza-
tion. Authors: Jose M. Maisog, Guoli Wang,
Karthik Devarajan.

gppois Gaussian Processes for Poisson-noised Data.
Author: Charles R. Hogg III.

gtable Arrange grobs in tables. Author: Hadley
Wickham.

gwerAM Controlling the genome-wide type I error
rate in association mapping experiments. Au-
thors: Benjamin Stich, Bettina Mueller, Hans-
Peter Piepho.

hbsae Hierarchical Bayesian Small Area Estimation.
Author: Harm Jan Boonstra. In view: Bayesian.

heatmapFit Heatmap Fit Statistic For Binary Depen-
dent Variable Models. Authors: Justin Esarey
and Andrew Pierce.

hierNet A Lasso for Hierarchical Interactions. Au-
thors: Jacob Bien and Rob Tibshirani.

hierarchicalDS Functions for performing hierarchi-
cal analysis of distance sampling data. Author:
P.B. Conn.

hmeasure The H-measure and other scalar classifi-
cation performance metrics. Authors: Christo-
foros Anagnostopoulos and David J. Hand.

hmmm Hierarchical multinomial marginal models.
Authors: Roberto Colombi, Sabrina Giordano,
Manuela Cazzaro.

holdem Texas Holdem simulator. Author: Frederic
Paik Schoenberg.

homeR Functions useful for building physics. Au-
thor: Neurobat AG.

hwriterPlus Extending the hwriter Package. Au-
thor: David Scott.

hypothesestest Confidence Intervals and Tests of
Statistical Hypotheses. Authors: Chengfeng
Liu, Huiqing Liu, Yingyan Liang, Ruibin Feng.

hzar Hybrid Zone Analysis using R. Author: Gra-
ham Derryberry.

iBUGS An Interface to R2WinBUGS/R2jags by
gWidgets. Authors: Yihui Xie and Jiebiao
Wang.

icensmis Study Design and Data Analysis in the
presence of error-prone diagnostic tests and
self-reported outcomes. Authors: Xiangdong
Gu and Raji Balasubramanian.

icomp ICOMP criterion. Author: Jake Ferguson.

igraphtosonia Convert iGraph graps to SoNIA ‘.son’
files. Author: Sean J Westwood.

infutil Information Utility. Author: Kristian E.
Markon.

insol Solar Radiation. Author: Javier G. Corripio.

intsvy Data Manager of International Assessment
Studies of Student Performance. Author:
Daniel Caro.

isopat Calculation of isotopic pattern for a given
molecular formula. Author: Martin Loos.

kSamples K-Sample Rank Tests and their Combina-
tions. Authors: Fritz Scholz and Angie Zhu.
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kelvin Calculate solutions to Kelvin differential
equation using Kelvin functions. Author: An-
drew J Barbour.

kitagawa Model the spectral response of a closed
water-well to harmonic strains at seismic fre-
quencies. Author: Andrew J Barbour.

klin Linear equations with Kronecker structure. Au-
thor: Tamas K Papp.

knitcitations Citations for knitr markdown files.
Author: Carl Boettiger.

kobe Tools for providing advice for the Tuna Re-
gional Fisheries Management Organisations.
Author: Laurence Kell.

labeling Axis Labeling. Author: Justin Talbot.

lambda.r Functional programming in R. Author:
Brian Lee Yung Rowe.

lavaan Latent Variable Analysis. Authors: Yves
Rosseel [aut, cre], Daniel Oberski [ctb], Jarrett
Byrnes [ctb], Leonard Vanbrabant [ctb], Victo-
ria Savalei [ctb], Ed Merkle [ctb], Michael Hal-
lquist [ctb], Mijke Rhemtulla [ctb], Myrsini Kat-
sikatsou [ctb]. In view: Psychometrics.

lavaan.survey Complex survey structural equation
modeling (SEM). Author: Daniel Oberski.

ldlasso LD LASSO Regression for SNP Association
Study. Author: Samuel G. Younkin.

ldr Methods for likelihood-based dimension reduc-
tion in regression. Authors: Kofi Placid
Adragni, Andrew Raim.

linLIR linear Likelihood-based Imprecise Regres-
sion. Author: Andrea Wiencierz.

lineup Lining up two sets of measurements. Au-
thor: Karl W Broman.

lint Tools to check R code style. Author: Andrew
Redd.

lmec Linear Mixed-Effects Models with Censored
Responses. Authors: Florin Vaida and Lin Liu.
In view: Survival.

logmult Log-multiplicative models, including asso-
ciation models. Author: Milan Bouchet-Valat.

logregperm Inference in Logistic Regression. Au-
thor: Douglas M. Potter.

loop loop decomposition of weighted directed
graphs for life cycle analysis, providing flexbile
network plotting methods, and analyzing food
chain properties in ecology. Author: Youhua
Chen.

lpint Local polynomial esitmators of intensity func-
tion or its derivatives. Author: Feng Chen.

lsmeans Least-squares means. Author: Russell V.
Lenth.

mRMRe Parallelized mRMR ensemble feature se-
lection. Authors: Nicolas De Jay, Simon
Papillon-Cavanagh, Benjamin Haibe-Kains.

maRketSim Market simulator for R. Author: Ari
Friedman. In view: Finance.

magicaxis Pretty scientific plotting with minor-tick
and log minor-tick support. Author: Aaron
Robotham.

mapplots Data visualisation on maps. Author:
Hans Gerritsen.

maxLinear Conditional Samplings for Max-Linear
Models. Author: Yizao Wang.

mcclust Process an MCMC Sample of Clusterings.
Author: Arno Fritsch. In view: Cluster.

mcll Monte Carlo Local Likelihood Estimation. Au-
thors: Minjeong Jeon, Cari Kaufman, and
Sophia Rabe-Hesketh.

mcpd Tools to analyse and use passport data for bi-
ological collections. Author: Reinhard Simon.

mcr Method Comparison Regression. Authors:
Ekaterina Manuilova, Andre Schuetzenmeis-
ter, Fabian Model.

mded Measuring the difference between two empir-
ical distributions. Author: Hideo Aizaki.

mederrRank Bayesian Methods for Identifying the
Most Harmful Medication Errors. Authors:
Sergio Venturini, Jessica Myers.

metRology Support for metrological applications.
Author: Stephen L R Ellison.

metamisc Diagnostic and prognostic meta analysis
(metamisc). Author: Thomas Debray.

miRada MicroRNA Microarray Data Analysis. Au-
thor: Bin Wang.

migest Useful R code for the Estimation of Migra-
tion. Author: Guy J. Abel.

minerva Maximal Information-Based Nonparamet-
ric Exploration R package for Variable Anal-
ysis. Authors: Michele Filosi [aut, cre],
Roberto Visintainer [aut], Davide Albanese
[aut], Samantha Riccadonna [ctb], Giuseppe Ju-
rman [ctb], Cesare Furlanello [ctb].

minxent Entropy Optimization Distributions. Au-
thor: Senay Asma.
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mixfdr Computes false discovery rates and effect
sizes using normal mixtures. Authors: Omkar
Muralidharan, with many suggestions from
Bradley Efron.

mlPhaser Multi-Locus Haplotype Phasing. Author:
Dave T. Gerrard.

mlica2 Independent Component Analysis using
Maximum Likelihood. Author: Andrew
Teschendorff.

mmeln Estimation of multinormal mixture distribu-
tion. Author: Charles-Edouard Giguere.

mmeta Multivariate Meta-Analysis Using Sar-
manov Beta Prior Distributions. Authors:
Sheng Luo, Yong Chen, Haitao Chu, Xiao Su.

mmm Multivariate Marginal Models. Authors:
Ozgur Asar, Ozlem Ilk.

motmot Models of Trait Macroevolution on Trees.
Authors: Gavin Thomas, Rob Freckleton. In
view: Phylogenetics.

mpa CoWords Method. Author: Daniel Hernando
Rodriguez and Campo Elias Pardo.

msap Statistical analysis for Methylation-sensitive
Amplification Polymorphism data. Author:
Andres Perez-Figueroa.

mtcreator Creating MAGE-TAB files using mtcre-
ator. Author: Fabian Grandke.

mtsdi Multivariate time series data imputation. Au-
thors: Washington Junger and Antonio Ponce
de Leon.

multgee GEE Solver for Correlated Nominal or Or-
dinal Multinomial Responses. Author: Anestis
Touloumis.

multibiplotGUI Multibiplot Analysis in R. Authors:
Ana Belen Nieto Librero, Nora Baccala, Purifi-
cacion Vicente Galindo, Purificacion Galindo
Villardon.

multisensi Multivariate Sensitivity Analysis. Au-
thors: Matieyendou Lamboni, Herve Monod.

muscle Multiple Sequence Alignment. Author: Al-
gorithm by Robert C. Edgar. R port by Alex T.
Kalinka.

mvShapiroTest Generalized Shapiro-Wilk test for
multivariate normality. Authors: Elizabeth
Gonzalez Estrada, Jose A. Villasenor Alva.

mvc Multi-View Clustering. Author: Andreas
Maunz.

mvsf Shapiro-Francia Multivariate Normality Test.
Author: David Delmail.

mvtmeta Multivariate meta-analysis. Author: Han
Chen.

namespace Provide namespace managment func-
tions not (yet) present in base R. Authors: Win-
ston Chang, Daniel Adler, Hadley Wickham,
Gregory R. Warnes, R Core Team.

ncg Computes the noncentral gamma function. Au-
thors: Daniel Furtado Ferreira, Izabela Regina
Cardoso de Oliveira and Fernando Henrique
Toledo.

ngspatial Classes for Spatial Data. Author: John
Hughes.

nlADG Regression in the Normal Linear ADG
Model. Authors: Gruber, Lutz F.

nlmrt Functions for nonlinear least squares solu-
tions. Author: John C. Nash.

nlts (non)linear time series analysis. Author: Ottar
N. Bjornstad.

nontarget Detecting, combining and filtering iso-
tope, adduct and homologue series relations
in high-resolution mass spectrometry (HRMS)
data. Author: Martin Loos.

nopp Nash Optimal Party Positions. Authors: Luigi
Curini, Stefano M. Iacus.

normwhn.test Normality and White Noise Testing.
Author: Peter Wickham.

notifyR Send push notifications to your smartphone
via pushover.net. Author: Torben Engelmeyer.

npmv Nonparametric Comparison of Multivariate
Samples. Author: Woodrow Burchett.

numbers Number-theoretic Functions. Author:
Hans W Borchers.

obliclus Cluster-based factor rotation. Author: Mi-
chio Yamamoto.

ocomposition Gibbs sampler for ordered composi-
tional data. Authors: Arturas Rozenas, Duke
University.

oem Orthogonalizing Expectation maximization.
Author: Bin Dai.

omd Filter the molecular descriptors for QSAR. Au-
thor: Bin Ma.

oncomodel Maximum likelihood tree models for
oncogenesis. Authors: Anja von Heydebreck,
contributions from Christiane Heiss.

opefimor Option Pricing and Estimation of Finan-
cial Models in R. Author: Stefano Maria Iacus.
In view: Finance.
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opmdata Example data for analysing OmniLog(R)
Phenotype Microarray data. Authors: Markus
Goeker, with contributions by Lea A.I. Vaas
and Johannes Sikorski.

orcutt Estimate procedure in case of first order au-
tocorrelation. Authors: Stefano Spada, Matteo
Quartagno, Marco Tamburini.

oro.pet Rigorous — Positron Emission Tomography.
Author: Brandon Whitcher.

p2distance Welfare’s Synthetic Indicator. Authors:
A.J. Perez-Luque; R. Moreno; R. Perez-Perez
and F.J. Bonet.

pGLS Generalized Least Square in comparative
Phylogenetics. Authors: Xianyun Mao and
Timothy Ryan.

pa Performance Attribution for Equity Portfolios.
Authors: Yang Lu and David Kane. In view:
Finance.

pacbpred PAC-Bayesian Estimation and Prediction
in Sparse Additive Models. Author: Benjamin
Guedj. In view: Bayesian.

pander An R pandoc writer. Author: Gergely
Daróczi.

parspatstat Parallel spatial statistics. Author:
Jonathan Lee.

partitionMetric Compute a distance metric between
two partitions of a set. Authors: David Weis-
man, Dan Simovici.

parviol Author: Jaroslav Myslivec.

pbdBASE Programming with Big Data — Core pbd
Classes and Methods. Authors: Drew Schmidt,
Wei-Chen Chen, George Ostrouchov, Prag-
neshkumar Patel. In view: HighPerformance-
Computing.

pbdDMAT Programming with Big Data — Dis-
tributed Matrix Computation. Authors: Drew
Schmidt, Wei-Chen Chen, George Ostrouchov,
Pragneshkumar Patel. In view: HighPerfor-
manceComputing.

pbdMPI Programming with Big Data — Interface
to MPI. Authors: Wei-Chen Chen, George Os-
trouchov, Drew Schmidt, Pragneshkumar Pa-
tel, Hao Yu. In view: HighPerformanceComput-
ing.

pbdSLAP Programming with Big Data — Scalable
Linear Algebra Packages. Authors: Wei-Chen
Chen [aut, cre], Drew Schmidt [aut], George
Ostrouchov [aut], Pragneshkumar Patel [aut],
ScaLAPACK [ctb]. In view: HighPerformance-
Computing.

pbivnorm Vectorized Bivariate Normal CDF. Au-
thors: Fortran code by Alan Genz. R code by
Brenton Kenkel, based on Adelchi Azzalini’s
mnormt package.

pcenum Permutations and Combinations Enumera-
tion. Author: Benjamin Auder.

penDvine Flexible Pair-Copula Estimation in D-
vines with Penalized Splines. Author: Chris-
tian Schellhase.

peplib Peptide Library Analysis Methods. Author:
Andrew White.

perry Resampling-based prediction error estimation
for regression models. Author: Andreas Al-
fons.

pesticides Analysis of single serving and compos-
ite pesticide residue measurements. Author:
David M Diez.

pheno2geno Generating genetic markers and maps
from molecular phenotypes. Authors: Konrad
Zych and Danny Arends.

phonR R tools for phoneticians and phonologists.
Author: Daniel R. McCloy.

phonTools Functions for phonetics in R. Author:
Santiago Barreda.

pkgutils Utilities for creating R packages. Author:
Markus Goeker.

planor Generation of regular factorial designs. Au-
thors: Hervé Monod, Annie Bouvier, André
Kobilinsky.

plmm Partially Linear Mixed Effects Model. Au-
thor: Ohinata Ren.

pln Polytomous logit-normit (graded logistic)
model estimation. Authors: Carl F. Falk and
Harry Joe.

plotKML Visualization of spatial and spatio-
temporal objects in Google Earth. Authors:
Tomislav Hengl, Contributions by: Pierre
Roudier, Dylan Beaudette, Daniel Nuest. In
view: Spatial.

plotSEMM Graphing nonlinear latent variable in-
teractions in SEMM. Authors: Bethany E. Kok,
Jolynn Pek, Sonya Sterba and Dan Bauer.

plsdepot Partial Least Squares (PLS) Data Analysis
Methods. Author: Gaston Sanchez.

pnmtrem Probit-Normal Marginalized Transition
Random Effects Models. Authors: Ozgur Asar,
Ozlem Ilk.

poibin The Poisson Binomial Distribution. Author:
Yili Hong. In view: Distributions.
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poisson.glm.mix Fit high dimensional mixtures of
Poisson GLM’s. Authors: Panagiotis Papasta-
moulis, Marie-Laure Martin-Magniette, Cathy
Maugis-Rabusseau.

poistweedie Poisson-Tweedie exponential family
models. Authors: David Pechel Cactcha, Laure
Pauline Fotso and Celestin C Kokonendji. In
view: Distributions.

popReconstruct Reconstruct population counts, fer-
tility, mortality and migration rates of human
populations of the recent past. Author: Mark
C. Wheldon.

postgwas GWAS Post-Processing Utilities. Author:
Milan Hiersche.

powerGWASinteraction Power Calculations for In-
teractions for GWAS. Author: Charles Kooper-
berg.

ppMeasures Point pattern distances and proto-
types. Authors: David M Diez, Katherine E
Tranbarger Freier, and Frederic P Schoenberg.

ppcor Partial and Semi-partial (Part) correlation.
Author: Seongho Kim.

pragma Provides a pragma / directive / keyword
syntax for R. Author: Christopher Brown.

prettyGraphs Publication-quality graphics. Author:
Derek Beaton.

prevR Estimating regional trends of a prevalence
from a DHS. Authors: Joseph Larmarange
— CEPED (Universite Paris Descartes Ined
IRD) IRD, with fundings from ANRS and IRD,
and technical support from LYSIS (info@lysis-
consultants.fr).

profanal Implements profile analysis described in
Davison & Davenport (2002). Author: Christo-
pher David Desjardins.

protViz Visualizing and Analyzing Mass Spectrom-
etry Related Data in Proteomics. Authors:
Christian Panse, Jonas Grossmann.

protiq Protein (identification and) quantification
based on peptide evidence. Authors: Sarah
Gerster and Peter Buehlmann.

protr Protein Sequence Feature Extraction with R.
Authors: Xiao Nan, Dongsheng Cao, Qingsong
Xu, Yizeng Liang.

psytabs Produce well-formatted tables for psycho-
logical research. Authors: Johannes Beller, So-
eren Kliem.

pvar p-variation. Author: Vygantas Butkus.

quadrupen Sparsity by Worst-Case Quadratic
Penalties. Author: Julien Chiquet.

r2stl Visualizing data using a 3D printer. Authors:
Ian Walker and José Gama.

rAltmetric Retrieves altmerics data for any pub-
lished paper from altmetrics.com. Author:
Karthik Ram.

rHpcc Interface between HPCC and R. Author: Di-
nesh Shetye.

rImpactStory Retrieves altmetrics from Impact-
Story. See http://impactstory.org for more
about the metrics. Authors: Karthik Ram, Scott
Chamberlain.

rJython R interface to Python via Jython. Au-
thors: G. Grothendieck and Carlos J. Gil Bel-
losta (authors of Jython itself are Jim Hugunin,
Barry Warsaw, Samuele Pedroni, Brian Zim-
mer, Frank Wierzbicki and others; Bob Ippolito
is the author of the simplejson Python module).

rPlant R interface to the iPlant Discovery Environ-
ment. Authors: Barb Banbury, Kurt Michels,
Jeremy M. Beaulieu, Brian O’Meara.

randomForestSRC Random Forests for Survival,
Regression, and Classification (RF-SRC). Au-
thors: Hemant Ishwaran, Udaya B. Kogalur.

randomizeBE Function to create a random list for
crossover studies. Author: D. Labes.

rbundler Manage an application’s dependencies
systematically and repeatedly. Author: Yoni
Ben-Meshulam.

rcqp Interface to the Corpus Query Protocol. Au-
thors: Bernard Desgraupes, Sylvain Loiseau.

rdd Regression Discontinuity Estimation. Author:
Drew Dimmery.

rdetools Relevant Dimension Estimation (RDE) in
Feature Spaces. Author: Jan Saputra Mueller.
In view: MachineLearning.

rdyncall Improved Foreign Function Interface (FFI)
and Dynamic Bindings to C Libraries (e.g.
OpenGL). Author: Daniel Adler.

reams Resampling-Based Adaptive Model Selec-
tion. Authors: Philip Reiss and Lei Huang.

rebird Interface to eBird. Authors: Rafael Maia,
Scott Chamberlain.

reccsim Simulation of Rare Events Case-Control
Studies. Author: Christian Westphal.

regsubseq Detect and Test Regular Sequences and
Subsequences. Author: Yanming Di.

rentrez Entrez in R. Author: David Winter.
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repolr Repeated measures proportional odds logis-
tic regression. Author: Nick Parsons.

restlos Robust estimation of location and scat-
ter. Authors: Steffen Liebscher and Thomas
Kirschstein.

retimes Reaction Time Analysis. Author: Davide
Massidda.

review Manage Review Logs. Author: Tim
Bergsma.

rfigshare An R interface to figshare.com. Authors:
Carl Boettiger, Scott Chamberlain, Karthik
Ram, Edmund Hart.

rgexf Build GEXF network files. Authors: George
Vega Yon, Jorge Fabrega Lacoa.

ridge Ridge Regression with automatic selection of
the penalty parameter. Author: Erika Cule.

ritis Taxonomic search of ITIS data. Author: Scott
Chamberlain.

rkt Mann-Kendall test, Seasonal and Regional
Kendall Tests. Author: Aldo Marchetto.

rlandscape Generates random landscapes with
specifiable spatial characteristics. Authors:
Gregor Passolt, Miranda J. Fix, Sandor F. Toth.

rmmseg4j R interface to the Java Chinese word seg-
mentation system of mmseg4j. Author: Huang
Ronggui.

rngtools Utility functions for working with Random
Number Generators. Author: Renaud Gau-
joux.

robustgam Robust Estimation for Generalized Ad-
ditive Models. Author: Raymond K. W. Wong.

robustloggamma Robust estimation of the general-
ized log gamma model. Authors: Claudio
Agostinelli, Alfio Marazzi, V.J. Victor and Alex
Randriamiharisoa.

robustreg Robust Regression Functions. Author:
Ian M. Johnson.

ropensnp Interface to OpenSNP API methods. Au-
thor: Scott Chamberlain.

rpf Response Probability Functions. Authors:
Joshua Pritikin [cre, aut], Jonathan Weeks [ctb].
In view: Psychometrics.

rrcovHD Robust multivariate Methods for High Di-
mensional Data. Author: Valentin Todorov.

rriskBayes Predefined Bayes models fitted with
Markov chain Monte Carlo (MCMC) (related to
the ’rrisk’ project). Authors: Natalia Belgorod-
ski, Matthias Greiner, Alexander Engelhardt.

rseedcalc Estimating the proportion of genetically
modified stacked seeds in seedlots via multi-
nomial group testing. Authors: Kevin Wright,
Jean-Louis Laffont.

rspa Adapt numerical records to fit (in)equality re-
strictions with the Successive Projection Algo-
rithm. Author: Mark van der Loo.

rts Raster time series analysis. Author: Babak
Naimi.

rvertnet Search VertNet database from R. Authors:
Scott Chamberlain, Vijay Barve.

rworldxtra Country boundaries at high resolution.
Author: Andy South.

sExtinct Calculates the historic date of extinction
given a series of sighting events. Author:
Christopher Clements.

samplingVarEst Sampling Variance Estimation. Au-
thors: Emilio Lopez Escobar, Ernesto Barrios
Zamudio.

sddpack Semidiscrete Decomposition. Authors:
Tamara G. Kolda, Dianne P. O’Leary.

sdnet Soft Discretization-based Bayesian Network
Inference. Author: Nikolay Balov.

seem Simulation of Ecological and Environmental
Models. Author: Miguel F. Acevedo.

selectr Translate CSS Selectors to XPath Expressions.
Authors: Simon Potter, Simon Sapin, Ian Bick-
ing.

separationplot Separation Plots. Authors: Brian D.
Greenhill, Michael D. Ward and Audrey Sacks.

seq2R Simple method to detect compositional
changes in genomic sequences. Authors: Nora
M. Villanueva, Marta Sestelo and Javier Roca-
Pardinas.

sig Print function signatures. Author: Richard Cot-
ton.

sigclust Statistical Significance of Clustering. Au-
thors: Hanwen Huang, Yufeng Liu and J. S.
Marron. In view: Cluster.

sigora SIGnature OverRepresentation Analysis. Au-
thors: Amir B.K. Foroushani, Fiona S.L.
Brinkman, David J. Lynn.

sirad Functions for calculating daily solar radiation
and evapotranspiration. Author: Jedrzej S. Bo-
janowski.

sisus Stable Isotope Sourcing using Sampling. Au-
thor: Erik Barry Erhardt.
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skewt The Skewed Student-t Distribution. Authors:
Robert King, with contributions from Emily
Anderson. In view: Distributions.

smart Sparse Multivariate Analysis via Rank Trans-
formation. Authors: Fang Han, Han Liu.

smco A simple Monte Carlo optimizer using adap-
tive coordinate sampling. Author: Juan David
Velasquez.

sme Smoothing-splines Mixed-effects Models. Au-
thor: Maurice Berk.

smirnov Provides two taxonomic coefficients from
E. S. Smirnov “Taxonomic analysis” (1969)
book. Author: Alexey Shipunov (with help of
Eugenij Altshuler).

sms Spatial Microsimulation. Author: Dimitris
Kavroudakis.

snort Social Network-Analysis On Relational Ta-
bles. Authors: Eugene Dubossarsky and Mark
Norrie.

soilwater Implements parametric formulas for soil
water retention or conductivity curve. Author:
Emanuele Cordano.

spTimer Spatio-Temporal Bayesian Modelling Us-
ing R. Authors: K. Shuvo Bakar and Sujit K.
Sahu. In view: Bayesian.

spa Implements The Sequential Predictions Algo-
rithm. Author: Mark Culp.

sparseHessianFD Interface to ACM TOMS Algo-
rithm 636, for computing sparse Hessians. Au-
thors: R interface code by Michael Braun; orig-
inal Fortran code by Thomas F. Coleman, Bur-
ton S. Garbow and Jorge J. More.

sperrorest Spatial Error Estimation and Variable Im-
portance. Author: Alexander Brenning.

sphereplot Spherical plotting. Author: Aaron
Robotham.

spsmooth An Extension Package for mgcv. Au-
thors: Wesley Burr, with contributions from
Karim Rahim.

squash Color-based plots for multivariate visualiza-
tion. Author: Aron Eklund.

sra Selection Response Analysis. Author: Arnaud
Le Rouzic.

stargazer LaTeX code for well-formatted regression
and summary statistics tables. Author: Marek
Hlavac.

stepp Subpopulation Treatment Effect Pattern Plot
(STEPP). Authors: Wai-ki Yip, with contribu-
tions from Ann Lazar, David Zahrieh, Chip
Cole, Ann Lazar, Marco Bonetti, and Richard
Gelber.

stocc Fit a spatial occupancy model via Gibbs sam-
pling. Author: Devin S. Johnson.

stppResid Perform residual analysis on space-time
point process models. Author: Robert
Clements.

sudokuplus Sudoku Puzzle (9 ∗ 9, 12 ∗ 12, 16 ∗ 16)
Generator and Solver. Authors: Zhengmairuo
Gan, Yuzhen Hua, Maosheng Zhang, Caiyan
Lai.

survIDINRI IDI and NRI for comparing competing
risk prediction models with censored survival
data. Authors: Hajime Uno, Tianxi Cai. In
view: Survival.

survivalROC Time-dependent ROC curve estima-
tion from censored survival data. Authors:
Patrick J. Heagerty, packaging by Paramita
Saha. In view: Survival.

svapls Surrogate variable analysis using partial least
squares in a gene expression study. Authors:
Sutirtha Chakraborty, Somnath Datta and Sus-
mita Datta.

sybilSBML SBML Integration in Package sybil. Au-
thor: Gabriel Gelius-Dietrich.

symbols Symbol plots. Author: Jaroslav Myslivec.

taRifx.geo Collection of various spatial functions.
Author: Ari B. Friedman.

tabplotd3 Interactive inspection of large data. Au-
thors: Edwin de Jonge and Martijn Tennekes.

teigen Model-based clustering and classification
with the multivariate t-distribution. Authors:
Jeffrey L. Andrews, Paul D. McNicholas. In
view: Cluster.

texreg Conversion of R regression output to LATEX ta-
bles. Author: Philip Leifeld.

tiff Read and write TIFF images. Author: Simon Ur-
banek.

tightClust Tight Clustering. Authors: George C.
Tseng, Wing H. Wong.

tilting Variable selection via Tilted Correlation
Screening algorithm. Author: Haeran Cho.

timeROC Time-dependent ROC curve and AUC for
censored survival data. Author: Paul Blanche.

tmg Truncated Multivariate Gaussian Sampling.
Author: Ari Pakman.
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tmle Targeted Maximum Likelihood Estimation.
Authors: Susan Gruber, in collaboration with
Mark van der Laan.

transmission Continuous time infectious disease
models on individual data. Authors: Alun
Thomas, Andrew Redd.

transnet Conducts transmission modeling on a
bayesian network. Author: Alun Thomas.

trex Truncated exact test for two-stage case-control
design for studying rare genetic variants. Au-
thors: Schaid DJ, Sinnwell JP.

trifield Some basic facilities for ternary fields and
plots. Author: Tim Keitt.

trustOptim Trust region nonlinear optimization, ef-
ficient for sparse Hessians. Author: Michael
Braun. In view: Optimization.

tslars Least angle regression for time series analysis.
Author: Sarah Gelper. In view: TimeSeries.

two.stage.boot Two-stage cluster sample bootstrap
algorithm. Author: Patrick Zimmerman.

twoStageGwasPower Compute thresholds and
power for two-stage gwas. Author: Dirk F
Moore.

upclass Updated Classification Methods using Un-
labelled Data. Authors: Niamh Russell, Laura
Cribbin, Thomas Brendan Murphy.

usdm Uncertainty analysis for species distribution
models. Author: Babak Naimi.

utility Construct, Evaluate and Plot Value and Util-
ity Functions. Author: Peter Reichert with con-
tributions by Nele Schuwirth.

validator External and Internal Validation Indices.
Author: Marcus Scherl.

vcf2geno Efficiently Read Variant Call Format
(VCF) into R. Authors: Xiaowei Zhan and
Dajiang Liu, with contributions of Jean-loup
Gailly, Mark Adler, Julian Seward and Heng Li.

vegclust Fuzzy clustering of vegetation data. Au-
thor: Miquel De Caceres.

violinmplot Combination of violin plot with mean
and standard deviation. Author: Raphael W.
Majeed.

vmv Visualization of Missing Values. Author:
Waqas Ahmed Malik.

vows Voxelwise semiparametrics. Authors: Philip
Reiss, Yin-Hsiu Chen, Lei Huang, and Lan
Huo.

vwr Useful functions for visual word recognition re-
search. Author: Emmanuel Keuleers.

wSVM Weighted SVM with boosting algorithm for
improving accuracy. Authors: SungHwan Kim
and Soo-Heang Eo.

waterData Retrieval, Analysis, and Anomaly Calcu-
lation of Daily Hydrologic Time Series Data.
Authors: Karen R. Ryberg and Aldo V. Vecchia.

wavemulcor Wavelet routine for multiple correla-
tion. Author: Javier Fernandez-Macho.

weathermetrics Functions to convert between
weather metrics. Authors: Brooke Anderson
and Roger Peng.

wgsea Wilcoxon based gene set enrichment analy-
sis. Author: Chris Wallace.

widals Weighting by Inverse Distance with Adap-
tive Least Squares for Massive Space-Time
Data. Author: Dave Zes.

x12GUI X12 — Graphical User Interface. Authors:
Daniel Schopfhauser, Alexander Kowarik, An-
gelika Meraner. In view: TimeSeries.

xoi Tools for analyzing crossover interference. Au-
thors: Karl W Broman, Il youp Kwak.

zendeskR Zendesk API Wrapper. Author: Tanya
Cashorali.

zyp Zhang + Yue-Pilon trends. Authors: David
Bronaugh, Arelia Werner for the Pacific Cli-
mate Impacts Consortium.

Other changes

• The following packages were moved to the
Archive: AIGIS, Biograph, BradleyTerry,
CCMtools, CGene, CONOR, COZIGAM,
CompetingRiskFrailty, Covpath, DCluster,
DDHFm, DOSim, DeducerMMR, Depela,
DescribeDisplay, Devore5, EMT, Electro-
Graph, EuclideanMaps, FourierDescriptors,
GWAtoolbox, Geneclust, HFWutils, IFP,
IQMNMR, MCE, MCLIME, MFDA, NMF,
OptionsPdf, PairedData, RFA, RLadyBug,
RScaLAPACK, RSiteSearch, Rassoc, Ratings,
RcmdrPlugin.EHESsampling, RcmdrPlu-
gin.SensoMineR, RcmdrPlugin.SurvivalT,
Rfun, Rpad, SNPMaP, SNPMaP.cdm,
SQLiteMap, SSSR, SV, SeqKnn, SpatialEpi,
ThreeGroups, TwoWaySurvival, UScen-
sus2000, UScensus2000add, VhayuR, accu-
racy, afc, agilp, amba, amer, anm, back-
fitRichards, belief, biGraph, brainwaver,
bspec, bwsurvival, chplot, clac, clustTool,
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clusterfly, clustvarsel, codep, colorout, com-
pOverlapCorr, concord, copulaedas, covRo-
bust, crossdes, crosshybDetector, cthresh,
cwhmisc, cyphid, dcens, diamonds, digitize,
dtt, dyad, edci, envelope, epinet, exactmaxsel,
extfunnel, favir, ffmanova, financial, fptdAp-
prox, frbf, fuzzyOP, gRC, gafit, gbev, gcm-
rec, geneARMA, hot, ipptoolbox, iteRates,
iv, jit, knn, knncat, labeltodendro, latticedl,
lda.cv, lodplot, mapLD, maptree, margLikAr-
rogance, mblm, mecdf, mimR, moc, mosaic-
Manip, mrp, mrpdata, mrt, msBreast, msDi-
lution, msProcess, msProstate, mtsc, network-
sis, nfda, nonbinROC, nutshellDE, onemap,
paltran, panel, papply, partitionMap, pcaPA,
permax, pgfSweave, phpSerialize, phybase,
qAnalyst, quaternions, rTOFsPRO, rWM-
BAT, rake, richards, rrp, rrv, rsdepth, rtv,
satin, scaleCoef, sdtalt, seas, simco, similar-
ityRichards, skellam, skills, soil.spec, som-
plot, spssDDI, stream.net, surveillance, swst,

tikzDevice, triads, truncgof, twslm, uncom-
press, voronoi, xterm256

• The following packages were resurrected from
the Archive: MAMA, NBPSeq, Peak2Trough,
RPPanalyzer, SAPP, Sim.DiffProcGUI,
SimHap, TSTutorial, copuladaes, dummies,
geoPlot, gmvalid, latentnet, lcd, mapReduce,
miniGUI, muStat, nonrandom, pheno, stat-
net, treelet, ttime.

• The following packages had to be removed:
Deducer, PBSmapping, fEcofin, ggdendro.

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org
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News from the Bioconductor Project
Bioconductor Team
Program in Computational Biology
Fred Hutchinson Cancer Research Center

Bioconductor 2.11 was released on 3 October 2012.
It is compatible with R 2.15.2, and consists of 610
software packages and more than 650 up-to-date
annotation packages. The release includes 58 new
software packages, and enhancements to many oth-
ers. Descriptions of new packages and updated
NEWS files provided by current package maintain-
ers are at http://bioconductor.org/news/bioc_2_
11_release/. Start using Bioconductor and R ver-
sion 2.15.2 with

> source("http://bioconductor.org/biocLite.R")
> biocLite()

Upgrade all packages to the current release with

> source("http://bioconductor.org/biocLite.R")
> biocLite("BiocUpgrade")

Install additional packages, e.g., VariantTools, with

> source("http://bioconductor.org/biocLite.R")
> biocLite("VariantTools")

Explore Bioconductor at http://bioconductor.org.
All packages are grouped by ‘BiocViews’ to iden-
tify coherent groups of packages. Each package has
an html page with the descriptions and links to vi-
gnettes, reference manuals, and use statistics.

A Bioconductor Amazon Machine Instance
is available; see http://bioconductor.org/help/
bioconductor-cloud-ami.

Core Annotation and Software
Packages

Our large collection of microarray- and organism-
specific annotation packages have been updated

to include current information. This release also
includes the OrganismDbi package to integrate
separate annotation resources. For example, the
Homo.sapiens package greatly simplifies access to
transcript, gene, and GO (gene ontology) annota-
tions.

GenomicRanges and related packages, e.g., Vari-
antAnnotation, IRanges, Biostrings, Rsamtools,
GenomicFeatures provide an extensive, mature
and extensible framework for interacting with high
throughput sequence data, either as a user or pack-
age developer. Many contributed packages rely on
this infrastructure for interoperable, re-usable analy-
sis.

MotifDb, part of a new emphasis on gene regula-
tion, offers a comprehensive annotated collection of
DNA-binding motifs from popular public sources.

Other activities

Bioconductor’s Annual Meeting was in Seattle, 23-
25 July 2012; our European developer community
meets 13-14 December in Zurich. We look for-
ward to our next Annual Meeting on 17-19 July
2013, and to additional training and community
activities advertised at http://bioconductor.org/
help/events/. The active Bioconductor mailing lists
(http://bioconductor.org/help/mailing-list/)
connect users with each other, to domain experts,
and to maintainers eager to ensure that their pack-
ages satisfy the needs of leading edge approaches.
Keep abreast of packages added to the ‘devel’ branch
and other activities by following Bioconductor on
Twitter.
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R Foundation News
by Kurt Hornik

Donations and new members

Donations

Jonathan M. Lees, USA

New benefactors

Dsquare, Germany

Cybaea Limited, U.K.

New supporting members

Pavel Motuzenko, Czech Republic
Ludwig Hothorn, Germany
Gergely Darocz, Hungary
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